-
Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study.
Various human cancers have ALK gene translocations, amplifications, or oncogenic mutations, such as anaplastic large-cell lymphoma, inflammatory myofibroblastic tumours, non-small-cell lung cancer (NSCLC), and neuroblastoma. Therefore, ALK inhibition could be a useful therapeutic strategy in children. We aimed to determine the safety, recommended phase 2 dose, and antitumour activity of crizotinib in children with refractory solid tumours and anaplastic large-cell lymphoma.
In this open-label, phase 1 dose-escalation trial, patients older than 12 months and younger than 22 years with measurable or evaluable solid or CNS tumours, or anaplastic large-cell lymphoma, refractory to therapy and for whom there was no known curative treatment were eligible. Crizotinib was given twice daily without interruption. Six dose levels (100, 130, 165, 215, 280, 365 mg/m(2) per dose) were assessed in the dose-finding phase of the study (part A1), which is now completed. The primary endpoint was to estimate the maximum tolerated dose, to define the toxic effects of crizotinib, and to characterise the pharmacokinetics of crizotinib in children with refractory cancer. Additionally, patients with confirmed ALK translocations, mutations, or amplification (part A2 of the study) or neuroblastoma (part A3) could enrol at one dose level lower than was currently given in part A1. We assessed ALK genomic status in tumour tissue and used quantitative RT-PCR to measure NPM-ALK fusion transcript in bone marrow and blood samples of patients with anaplastic large-cell lymphoma. All patients who received at least one dose of crizotinib were evaluable for response; patients completing at least one cycle of therapy or experiencing dose limiting toxicity before that were considered fully evaluable for toxicity. This study is registered with ClinicalTrials.gov, NCT00939770.
79 patients were enrolled in the study from Oct 2, 2009, to May 31, 2012. The median age was 10.1 years (range 1.1-21.4); 43 patients were included in the dose escalation phase (A1), 25 patients in part A2, and 11 patients in part A3. Crizotinib was well tolerated with a recommended phase 2 dose of 280 mg/m(2) twice daily. Grade 4 adverse events in cycle 1 were neutropenia (two) and liver enzyme elevation (one). Grade 3 adverse events that occurred in more than one patient in cycle 1 were lymphopenia (two), and neutropenia (eight). The mean steady state peak concentration of crizotinib was 630 ng/mL and the time to reach this peak was 4 h (range 1-6). Objective tumour responses were documented in 14 of 79 patients (nine complete responses, five partial responses); and the anti-tumour activity was enriched in patients with known activating ALK aberrations (eight of nine with anaplastic large-cell lymphoma, one of 11 with neuroblastoma, three of seven with inflammatory myofibroblastic tumour, and one of two with NSCLC).
The findings suggest that a targeted inhibitor of ALK has antitumour activity in childhood malignancies harbouring ALK translocations, particularly anaplastic large-cell lymphoma and inflammatory myofibroblastic tumours, and that further investigation in the subset of neuroblastoma harbouring known ALK oncogenic mutations is warranted.
Pfizer and National Cancer Institute grant to the Children's Oncology Group.
Mossé YP
,Lim MS
,Voss SD
,Wilner K
,Ruffner K
,Laliberte J
,Rolland D
,Balis FM
,Maris JM
,Weigel BJ
,Ingle AM
,Ahern C
,Adamson PC
,Blaney SM
... -
《-》
-
Ceritinib in paediatric patients with anaplastic lymphoma kinase-positive malignancies: an open-label, multicentre, phase 1, dose-escalation and dose-expansion study.
Several paediatric malignancies, including anaplastic large cell lymphoma (ALCL), inflammatory myofibroblastic tumour (IMT), neuroblastoma, and rhabdomyosarcoma, harbour activation of anaplastic lymphoma kinase (ALK) through different mechanisms. Here, we report the safety, pharmacokinetics, and efficacy of ceritinib in paediatric patients with ALK-positive malignancies.
This multicentre, open-label, phase 1 trial was done at 23 academic hospitals in ten countries. Children (aged ≥12 months to <18 years) diagnosed with locally advanced or metastatic ALK-positive malignancies that had progressed despite standard therapy, or for which no effective standard therapy were available, were eligible. ALK-positive malignancies were defined as those with ALK rearrangement, amplification, point mutation, or in the case of rhabdomyosarcoma, expression in the absence of any genetic alteration. Eligible patients had evaluable or measurable disease as defined by either Response Evaluation Criteria in Solid Tumours, version 1.1 for patients with non-haematological malignancies, International Neuroblastoma Response Criteria scan for patients with neuroblastoma, or International Working Group criteria for patients with lymphoma. Other eligibility criteria were Karnofsky performance status score of at least 60% for patients older than 12 years or Lansky score of at least 50% for patients aged 12 years or younger. This study included a dose-escalation part, followed by a dose-expansion part, in which all patients received treatment at the recommended dose for expansion (RDE) established in the dose-escalation part. Both parts of the study were done in fasted and fed states. In the dose-escalation part, patients were treated with once-daily ceritinib orally, with dose adjusted for body-surface area, rounded to the nearest multiple of the 50 mg dose strength. The starting dose in the fasted state was 300 mg/m2 daily and for the fed state was 320 mg/m2 daily. The primary objective of this study was to establish the maximum tolerated dose (ie, RDE) of ceritinib in the fasted and fed states. The RDE was established on the basis of the incidence of dose-limiting toxicities in patients who completed a minimum of 21 days of treatment with safety assessments and at least 75% drug exposure, or who discontinued treatment earlier because of dose-limiting toxicity. Overall response rate (defined as the proportion of patients with a best overall response of complete response or partial response) was a secondary endpoint. Activity and safety analyses were done in all patients who received at least one dose of ceritinib. This trial is registered with ClinicalTrials.gov (NCT01742286) and is completed.
Between Aug 28, 2013, and Oct 17, 2017, 83 children with ALK-positive malignancies were enrolled to the dose-escalation (n=40) and dose-expansion (n=43) groups. The RDE of ceritinib was established as 510 mg/m2 (fasted) and 500 mg/m2 (fed). 55 patients (30 with neuroblastoma, ten with IMT, eight with ALCL, and seven with other tumour types) were treated with ceritinib at the RDE (13 patients at 510 mg/m2 fasted and 42 patients at 500 mg/m2 fed). The median follow-up was 33·3 months (IQR 24·8-39·3) for patients with neuroblastoma, 33·2 months (27·9-35·9) for those with IMT, 34·0 months (21·9-46·4) for those with ALCL, and 27·5 months (22·4-36·9) for patients with other tumour types. An overall response was recorded in six (20%; 95% CI 8-39) of 30 patients with neuroblastoma, seven (70%; 33-93) of ten patients with IMT, six (75%; 35-97) of eight patients with ALCL, and one (14%; <1-58) of seven patients with other tumours. The safety profile of ceritinib was consistent with that observed in adult patients. All patients had at least one adverse event. Grade 3 or 4 adverse events occurred in 67 (81%) of 83 patients and were mostly increases in aminotransferases (alanine aminotransferase increase in 38 [46%] patients and aspartate aminotransferase increase in 27 [33%] patients). At least one serious adverse event was reported in 40 (48%) of 83 patients and 31 (37%) of 83 patients had at least one grade 3 or 4 serious adverse event. 14 (17%) deaths occurred during the study, of which 12 were on-treatment deaths and two were after 30 days of the last dose. Of the 12 on-treatment deaths, ten were due to disease progression (neuroblastoma), one due to sepsis, and one due to intractable hypotension.
Ceritinib 500 mg/m2 once daily with food is the recommended dose for paediatric patients with ALK-positive malignancies. Ceritinib showed promising preliminary antitumour activity in patients with ALK-positive refractory or recurrent IMT or ALCL, and in a subset of patients with relapsed or refractory neuroblastoma, with a manageable safety profile. Our data support the notion that ALK inhibitors should be considered in therapeutic strategies for paediatric patients with malignancies with genetic ALK alterations.
Novartis Pharmaceutical Corporation.
Fischer M
,Moreno L
,Ziegler DS
,Marshall LV
,Zwaan CM
,Irwin MS
,Casanova M
,Sabado C
,Wulff B
,Stegert M
,Wang L
,Hurtado FK
,Branle F
,Geoerger B
,Schulte JH
... -
《-》
-
Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study.
Gene fusions involving NTRK1, NTRK2, or NTRK3 (TRK fusions) are found in a broad range of paediatric and adult malignancies. Larotrectinib, a highly selective small-molecule inhibitor of the TRK kinases, had shown activity in preclinical models and in adults with tumours harbouring TRK fusions. This study aimed to assess the safety of larotrectinib in paediatric patients.
This multicentre, open-label, phase 1/2 study was done at eight sites in the USA and enrolled infants, children, and adolescents aged 1 month to 21 years with locally advanced or metastatic solid tumours or CNS tumours that had relapsed, progressed, or were non-responsive to available therapies regardless of TRK fusion status; had a Karnofsky (≥16 years of age) or Lansky (<16 years of age) performance status score of 50 or more, adequate organ function, and full recovery from the acute toxic effects of all previous anticancer therapy. Following a protocol amendment on Sept 12, 2016, patients with locally advanced infantile fibrosarcoma who would require disfiguring surgery to achieve a complete surgical resection were also eligible. Patients were enrolled to three dose cohorts according to a rolling six design. Larotrectinib was administered orally (capsule or liquid formulation), twice daily, on a continuous 28-day schedule, in increasing doses adjusted for age and bodyweight. The primary endpoint of the phase 1 dose escalation component was the safety of larotrectinib, including dose-limiting toxicity. All patients who received at least one dose of larotrectinib were included in the safety analyses. Reported here are results of the phase 1 dose escalation cohort. Phase 1 follow-up and phase 2 are ongoing. This trial is registered with ClinicalTrials.gov, number NCT02637687.
Between Dec 21, 2015, and April 13, 2017, 24 patients (n=17 with tumours harbouring TRK fusions, n=7 without a documented TRK fusion) with a median age of 4·5 years (IQR 1·3-13·3) were enrolled to three dose cohorts: cohorts 1 and 2 were assigned doses on the basis of both age and bodyweight predicted by use of SimCyp modelling to achieve an area under the curve equivalent to the adult doses of 100 mg twice daily (cohort 1) and 150 mg twice daily (cohort 2); and cohort 3 was assigned to receive a dose of 100 mg/m2 twice daily (maximum 100 mg per dose), regardless of age, equating to a maximum of 173% of the recommended adult phase 2 dose. Among enrolled patients harbouring TRK fusion-positive cancers, eight (47%) had infantile fibrosarcoma, seven (41%) had other soft tissue sarcomas, and two (12%) had papillary thyroid cancer. Adverse events were predominantly grade 1 or 2 (occurring in 21 [88%] of 24 patients); the most common larotrectinib-related adverse events of all grades were increased alanine and aspartate aminotransferase (ten [42%] of 24 each), leucopenia (five [21%] of 24), decreased neutrophil count (five [21%] of 24), and vomiting (five [21%] of 24). Grade 3 alanine aminotransferase elevation was the only dose-limiting toxicity and occurred in one patient without a TRK fusion and with progressive disease. No grade 4 or 5 treatment-related adverse events were observed. Two larotrectinib-related serious adverse events were observed: grade 3 nausea and grade 3 ejection fraction decrease during the 28-day follow-up after discontinuing larotrectinib and while on anthracyclines. The maximum tolerated dose was not reached, and 100 mg/m2 (maximum of 100 mg per dose) was established as the recommended phase 2 dose. 14 (93%) of 15 patients with TRK fusion-positive cancers achieved an objective response as per Response Evaluation Criteria In Solid Tumors version 1.1; the remaining patient had tumour regression that did not meet the criteria for objective response. None of the seven patients with TRK fusion-negative cancers had an objective response.
The TRK inhibitor larotrectinib was well tolerated in paediatric patients and showed encouraging antitumour activity in all patients with TRK fusion-positive tumours. The recommended phase 2 dose was defined as 100mg/m2 (maximum 100 mg per dose) for infants, children, and adolescents, regardless of age.
Loxo Oncology Inc.
Laetsch TW
,DuBois SG
,Mascarenhas L
,Turpin B
,Federman N
,Albert CM
,Nagasubramanian R
,Davis JL
,Rudzinski E
,Feraco AM
,Tuch BB
,Ebata KT
,Reynolds M
,Smith S
,Cruickshank S
,Cox MC
,Pappo AS
,Hawkins DS
... -
《-》
-
First-in-human, open-label dose-escalation and dose-expansion study of the safety, pharmacokinetics, and antitumor effects of an oral ALK inhibitor ASP3026 in patients with advanced solid tumors.
Li T
,LoRusso P
,Maitland ML
,Ou SH
,Bahceci E
,Ball HA
,Park JW
,Yuen G
,Tolcher A
... -
《Journal of Hematology & Oncology》
-
Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prosp
An inflammatory myofibroblastic tumour (IMFT) is a rare mesenchymal neoplasm characterised by anaplastic lymphoma kinase (ALK) gene rearrangements. We assessed the activity and safety of crizotinib, a tyrosine kinase inhibitor, targeting ALK in patients with advanced IMFT either with or without ALK alterations.
We did a multicentre, biomarker-driven, single-drug, non-randomised, open-label, two-stage phase 2 trial (European Organisation for Research and Treatment of Cancer 90101 CREATE) at 13 study sites (five university hospitals and eight specialty clinics) in eight European countries (Belgium, France, Germany, Italy, Netherlands, Poland, Slovakia, and the UK). Eligible participants were patients aged at least 15 years with a local diagnosis of advanced or metastatic IMFT deemed incurable with surgery, radiotherapy, or systemic therapy; measurable disease; an Eastern Cooperative Oncology Group performance status of 0-2; and adequate haematological, renal, and liver function. Central reference pathology was done for confirmation of the diagnosis, and ALK positivity or negativity was assessed centrally using immunohistochemistry and fluorescence in-situ hybridisation based on archival tumour tissue and defined as ALK immunopositivity or rearrangements in at least 15% of tumour cells. Eligible ALK-positive and ALK-negative patients received oral crizotinib 250 mg twice per day administered on a continuous daily dosing schedule (the duration of each treatment cycle was 21 days) until documented disease progression, unacceptable toxicity, or patient refusal. If at least two of the first 12 eligible and assessable ALK-positive patients achieved a confirmed complete or partial response according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, a maximum of 35 patients were to be enrolled. If at least six ALK-positive patients achieved a confirmed response, the trial would be deemed successful. The primary endpoint was the proportion of patients who achieved an objective response (ie, a complete or partial response) as per RECIST 1.1, with response confirmation assessed by the local investigator every other cycle. Activity and safety endpoints were analysed in the per-protocol population. This trial is registered with ClinicalTrials.gov, number NCT01524926.
Between Oct 3, 2012, and April 12, 2017, we recruited and treated 20 eligible participants, 19 of whom were assessable for the primary endpoint. Median follow-up was 863 days (IQR 358-1304). Six of 12 ALK-positive patients (50%, 95% CI 21·1-78·9) and one of seven ALK-negative patients (14%, 0·0-57·9) achieved an objective response. The most common treatment-related adverse events in the 20 participants were nausea (11 [55%]), fatigue (9 [45%]), blurred vision (nine [45%]), vomiting (seven [35%]), and diarrhoea (seven [35%]). Eight serious adverse events occurred in five patients: pneumonia, fever of unknown cause, a heart attack with increased creatinine and possible sepsis, an abdominal abscess with acute renal insufficiency, and a QT prolongation.
With 50% of participants with ALK-positive tumours achieving an objective response, crizotinib met the prespecified criteria for success in this trial. The results presented here support the rationale for inhibiting ALK in patients with IMFT. Crizotinib could be considered as the standard of care for patients with locally advanced or metastatic ALK-positive IMFT who do not qualify for curative surgery.
The European Organisation for Research and Treatment of Cancer and Pfizer.
Schöffski P
,Sufliarsky J
,Gelderblom H
,Blay JY
,Strauss SJ
,Stacchiotti S
,Rutkowski P
,Lindner LH
,Leahy MG
,Italiano A
,Isambert N
,Debiec-Rychter M
,Sciot R
,Van Cann T
,Marréaud S
,Nzokirantevye A
,Collette S
,Wozniak A
... -
《-》