Gremlin is a downstream profibrotic mediator of transforming growth factor-beta in cultured renal cells.
摘要:
Chronic kidney disease is characterized by accumulation of extracellular matrix in the tubulointerstitial area. Fibroblasts are the main matrix-producing cells. One source of activated fibroblasts is the epithelial mesenchymal transition (EMT). In cultured tubular epithelial cells, transforming growth factor-β (TGF-β1) induced Gremlin production associated with EMT phenotypic changes, and therefore Gremlin has been proposed as a downstream TGF-β1 mediator. Gremlin is a developmental gene upregulated in chronic kidney diseases associated with matrix accumulation, but its direct role in the modulation of renal fibrosis and its relation with TGF-β has not been investigated. Murine renal fibroblasts and human tubular epithelial cells were studied. Renal fibrosis was determined by evaluation of key profibrotic factors, extracellular matrix proteins (ECM) and EMT markers by Western blot/confocal microscopy or real-time PCR. Endogenous Gremlin was targeted with small interfering RNA. In murine fibroblasts, stimulation with recombinant Gremlin upregulated profibrotic genes, such as TGF-β1, and augmented the production of ECM proteins, including type I collagen. The blockade of endogenous Gremlin with small interfering RNA inhibited TGF-β1-induced ECM upregulation. In tubular epithelial cells Gremlin also increased profibrotic genes and caused EMT changes: phenotypic modulation to myofibroblast-like morphology, loss of epithelial markers and in-duction of mesenchymal markers. Moreover, Gremlin gene silencing inhibited TGF-β1-induced EMT changes. Gremlin directly activates profibrotic events in cul-tured renal fibroblasts and tubular epithelial cells. Moreover, endogenous Gremlin blockade inhibited TGF-β-mediated matrix production and EMT, suggesting that Gremlin could be a novel therapeutic target for renal fibrosis.
收起
展开
DOI:
10.1159/000346575
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(443)
参考文献(0)
引证文献(25)
来源期刊
影响因子:0
JCR分区: 暂无
中科院分区:暂无