Effects of simulated crouch gait on foot kinematics and kinetics in healthy children.
摘要:
Identification of secondary and tertiary impairments in neurologically induced gait deviations, such as crouch gait, is not always straightforward, but essential in order to decide upon the most efficient medical treatment in patients with cerebral palsy (CP). Until now, exact intersegmental dependency of the development of foot deformities has not been investigated. Therefore, the aim of this study was to explore if an artificially induced bilateral knee flexion contracture causes compensatory mechanisms in foot motion during gait in healthy children. Three-dimensional kinematic and kinetic data from 30 healthy children (mean age 10.6 years) were derived from the Oxford Foot model (OFM). Participants walked first in an artificially induced crouch gait (limitation of knee extension to 40°) and then normally. Walking speed was kept the same in both conditions. Analysis revealed small but significant (p<0.05) differences between the two conditions in hindfoot and forefoot kinematics in all three planes during the stance phase as well as for all peak internal moments within the foot. In general the foot tended to compensate for an artificial knee flexion contracture with an increase in maximal dorsiflexion, eversion and external rotation of the hindfoot, which also allowed increased foot motion in other foot segments. The results of this study showed that an isolated proximal joint contracture had an influence on foot position during stance in healthy children. Further interpretation of the data in relation to CP children will be possible as soon as comparable OFM data of pathological crouch gait is available.
收起
展开
DOI:
10.1016/j.gaitpost.2013.02.009
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(621)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无