Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia.
Several strains of heterotrophic, anaerobic thermophilic bacteria were isolated from hot springs of the Uzon Caldera, Kamchatka, Far East Russia. Strain JW/IW010(T) was isolated from a hot spring within the West sector of the Eastern Thermal field, near Pulsating Spring in the Winding Creek area. Cells of strain JW/IW010(T) were straight to slightly curved rods, 0.5 mum in width and variable in length from 2 to 5 mum and occasionally up to 15 mum, and formed oval subterminal spores. Cells stained Gram-negative, but were Gram-type positive. Growth was observed between 32.5 and 69 degrees C with an optimum around 61 degrees C (no growth occurred at or below 30 degrees C, or at or above 72 degrees C). The pH(60 degrees C) range for growth was 4.2-8.9 with an optimum at 7.1 (no growth occurred at or below pH(60 degrees C) 3.9, or at 9.2 or above). The shortest observed doubling-time at pH(60 degrees C) 6.9 and 61 degrees C was 30 min. Strain JW/IW010(T) was chemo-organotrophic; yeast extract, peptone, Casamino acids and tryptone supported growth. Yeast extract was necessary for the utilization of non-proteinaceous substrates, and growth was observed with inulin, cellobiose, maltose, sucrose, glucose, fructose, galactose, mannose, xylose, trehalose, mannitol, pyruvate and crotonate. The G+C content of the genomic DNA of strain JW/IW010(T) was 33.6 mol% (HPLC method). The major phospholipid fatty acids were iso-15 : 0 (53.5 %), 15 : 0 (11.8 %), 16 : 0 (7.3 %), 10-methyl 16 : 0 (7.3 %) and anteiso-15 : 0 (5.3 %). 16S rRNA gene sequence analysis placed strain JW/IW010(T) in the genus Thermoanaerobacter of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) (97 % 16S rRNA gene sequence similarity) and Thermoanaerobacter kivui DSM 2030(T) (94.5 %) as the closest phylogenetic relatives with validly published names. The level of DNA-DNA relatedness between strain JW/IW010(T) and Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) was 64 %. Based on the physiological, phylogenetic and genotypic data, strain JW/IW010(T) represents a novel taxon, for which the name Thermoanaerobacter uzonensis sp. nov. is proposed. The type strain is JW/IW010(T) (=ATCC BAA-1464(T)=DSM 18761(T)). The effectively published strain, 1501/60, of 'Clostridium uzonii' [Krivenko, V. V., Vadachloriya, R. M., Chermykh, N. A., Mityushina, L. L. & Krasilnikova, E. N. (1990). Microbiology (English translation of Mikrobiologiia) 59, 741-748] had approximately 88.0 % DNA-DNA relatedness with strain JW/IW010(T) and was included in the novel taxon.
Wagner ID
,Zhao W
,Zhang CL
,Romanek CS
,Rohde M
,Wiegel J
... -
《international journal of systematic and evolutionary microbiology》
Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.
A strictly anaerobic, thermophilic bacterium, designated strain Y170(T), was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170(T) were slightly curved rods (1.2-12x0.8-1.1 mum) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 degrees C (temperature range for growth was 55-80 degrees C) and pH 7 (pH range for growth was 5-9). Strain Y170(T) grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, myo-inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO(2) and H(2). Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170(T) was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and NaCl concentrations greater than 2 % inhibited growth. The G+C content of the DNA was 48+/-1 mol% [sd (n=3); T(m)]. 16S rRNA gene sequence analysis indicated that strain Y170(T) is a member of the family Syntrophomonadaceae, class Clostridia, phylum Firmicutes and was most closely related to members of the genus Thermosediminibacter (mean similarity of 93.6 %). On the basis of the 16S rRNA gene sequence comparisons and physiological characteristics, strain Y170(T) is considered to represent a novel species of a new genus, for which the name Fervidicola ferrireducens gen. nov., sp. nov. is proposed. The type strain is Y170(T) (=KCTC 5610(T)=JCM 15106(T)=DSM 21121(T)).
Ogg CD
,Patel BK
《international journal of systematic and evolutionary microbiology》