-
Airway clearance devices for cystic fibrosis: an evidence-based analysis.
The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference.
Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF. A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance. AIRWAY CLEARANCE DEVICES: THERE ARE AT LEAST THREE CLASSES OF AIRWAY CLEARANCE DEVICES: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP) devices. Within these classes are numerous different brands of devices from various manufacturers, each with subtle iterations. At least 10 devices are licensed by Health Canada (ranging from Class 1 to Class 3 devices). EVIDENCE-BASED ANALYSIS OF EFFECTIVENESS:
Does long-term use of ACDs improve outcomes of interest in comparison to CCPT in patients with CF?Does long-term use of one class of ACD improve outcomes of interest in comparison to another class of ACD in CF patients?
A comprehensive literature search was performed on March 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1950 to March 7, 2009.
All randomized controlled trials including those of parallel and crossover design,Systematic reviews and/or meta-analyses. Randomized controlled trials (RCTs), systematic reviews and meta-analyses
Abstracts were generally excluded because their methods could not be examined; however, abstract data was included in several Cochrane meta-analyses presented in this paper;Studies of less than seven days duration (including single treatment studies);Studies that did not report primary outcomes;Studies in which less than 10 patients completed the study.
Primary outcomes under review were percent-predicted forced expiratory volume (FEV-1), forced vital capacity (FVC), and forced expiratory flow between 25%-75% (FEF25-75). Secondary outcomes included number of hospitalizations, adherence, patient preference, quality of life and adverse events. All outcomes were decided a priori.
Literature searching and back-searching identified 13 RCTs meeting the inclusion criteria, along with three Cochrane systematic reviews. The Cochrane reviews were identified in preliminary searching and used as the basis for formulating this review. Results were subgrouped by comparison and according to the available literature. For example, results from Cochrane meta-analyses included abstract data and therefore, additional meta-analyses were also performed on trials reported as full publications only (MAS generally excludes abstracted data when full publications are available as the methodological quality of trials reported in abstract cannot be properly assessed). Executive Summary Table 1 summarizes the results across all comparisons and subgroupings for primary outcomes of pulmonary function. Only two comparisons yielded evidence of moderate or high quality according to GRADE criteria-the comparisons of CCPT vs. PEP and handheld AOD vs. PEP-but only the comparison of CCPT vs. PEP noted a significant difference between treatment groups. In comparison to CCPT, there was a significant difference in favour of PEP for % predicted FEV-1 and FVC according to one long-term, parallel RCT. This trial was accepted as the best available evidence for the comparison. The body of evidence for the remaining comparisons was low to very low, according to GRADE criteria, being downgraded most often because of poor methodological quality and low generalizability. Specifically, trials were likely not adequately powered (low sample sizes), did not conduct intention-to-treat analyses, were conducted primarily in children and young adolescents, and outdated (conducted more than 10 years ago). Secondary outcomes were poorly or inconsistently reported, and were generally not of value to decision-making. Of note, there were a significantly higher number of hospitalizations among participants undergoing AOD therapy in comparison to PEP therapy. ES Table 1:Summarization of results for primary outcomes by comparison and subgroupingsOutcome or SubgroupNo. of StudiesEstimate of Effectiveness (95% CI)P-valueHeterogeneity (I(2))GRADECCPT vs. PEP Cochrane FEV-1 FVC FEF(25-75%)6640.08 (-1.45 to 1.62)0.38 (-1.56 to 2.23)-0.44 (-3.38 to 2.50)0.910.700.7746%63%36 N/A Full publications only FEV-1 FVC FEF(25-75%)332-0.50 (-3.93 to 2.92)-0.86 (-4.66 to 2.95)-0.12 (-6.22 to 5.98)0.770.660.9777%74%0% N/A Long-term, parallel RCTs only FEV-1 FVC FEF(25-75%)111-8.25 (-15.77 to -0.75)-8.74 (-16.03 to -1.45)-3.56 (-13.30 to 6.18)0.030.020.47N/AN/AN/A 1 TrialMODERATECCPT vs. HFCC/MP Cochrane FEV-1 FVC FEF(25-75%)332-1.76 (-4.67 to 1.16)-1.42 (-5.17 to 2.33)0.49 (-2.54 to 3.52)0.240.460.750%70%0% N/A Full publications only FEV-1 FVC FEF(25-75%)332-2.10 (-5.49 to 1.29)-3.86 (-8.05 to 0.33)0.49 (-2.54 to 3.52)0.230.070.750%0%0% 3 TrialsLOWCCPT vs. AOD 2 of 3 RCTs/Cochrane FEV-1 FVC FEF(25-75%)2220.80 (-5.79 to 7.39)6.06 (-2.42 to 14.55)1.26 (-7.56 to 10.09)0.810.160.780%12%0% 3 TrialsLOWAOD vs. PEP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF(25-75%)2220.29 (-4.17 to 4.75)-0.55 (-4.60 to 3.50)0.10 (-4.86 to 5.06)0.900.790.9773%77%0% 2 TrialsMODERATEAOD vs. HFCC/MP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF(25-75%)111-1.6 (-3.44 to 0.24)-1.80 (-4.32 to 0.72)-1.40 (-3.07 to 0.27)0.090.080.16N/AN/AN/A 1 TrialVERY LOWBolding indicates significant differencePositive summary statistics favour the former intervention
AOD, airway oscillating device; CCPT, conventional chest physiotherapy; CI, confidence interval; HFCC, high frequency chest compression; MP, mechanical percussion; N/A: not applicable; PEP, positive expiratory pressure
Devices ranged in cost from around $60 for PEP and handheld AODs to upwards of $18,000 for a HFCC vest device. Although the majority of device costs are paid out-of-pocket by the patients themselves, their parents, or covered by third-party medical insurance, Ontario did provide funding assistance through the Assistive Devices Program (ADP) for postural drainage boards and MP devices. These technologies, however, are either obsolete or their clinical efficacy is not supported by evidence. ADP provided roughly $16,000 in funding for the 2008/09 fiscal year. Using device costs and prevalent and incident cases of CF in Ontario, budget impact projections were generated for Ontario. Prevalence of CF in Ontario for patients from ages 6 to 71 was cited as 1,047 cases in 2002 while incidence was estimated at 46 new cases of CF diagnosed per year in 2002. Budget impact projections indicated that PEP and handheld AODs were highly economically feasible costing around $90,000 for the entire prevalent population and less than $3,000 per year to cover new incident cases. HFCC vest devices were by far the most expensive, costing in excess of $19 million to cover the prevalent population alone.
There is currently a lack of sufficiently powered, long-term, parallel randomized controlled trials investigating the use of ACDs in comparison to other airway clearance techniques. While much of the current evidence suggests no significant difference between various ACDs and alternative therapies/technologies, at least according to outcomes of pulmonary function, there is a strong possibility that past trials were not sufficiently powered to identify a difference. Unfortunately, it is unlikely that there will be any future trials comparing ACDs to CCPT as withholding therapy using an ACD may be seen as unethical at present. Conclusions of clinical effectiveness are as follows: Moderate quality evidence suggests that PEP is at least as effective as or more effective than CCPT, according to primary outcomes of pulmonary function. (ABSTRACT TRUNCATED)
Medical Advisory Secretariat
《-》
-
Conventional chest physiotherapy compared to other airway clearance techniques for cystic fibrosis.
Cystic fibrosis (CF) is an inherited life-limiting disorder. Over time persistent infection and inflammation within the lungs contribute to severe airway damage and loss of respiratory function. Chest physiotherapy, or airway clearance techniques (ACTs), are integral in removing airway secretions and initiated shortly after CF diagnosis. Conventional chest physiotherapy (CCPT) generally requires assistance, while alternative ACTs can be self-administered, facilitating independence and flexibility. This is an updated review.
To evaluate the effectiveness (in terms of respiratory function, respiratory exacerbations, exercise capacity) and acceptability (in terms of individual preference, adherence, quality of life) of CCPT for people with CF compared to alternative ACTs.
We used standard, extensive Cochrane search methods. The latest search was 26 June 2022.
We included randomised or quasi-randomised controlled trials (including cross-over design) lasting at least seven days and comparing CCPT with alternative ACTs in people with CF.
We used standard Cochrane methods. Our primary outcomes were 1. pulmonary function tests and 2. number of respiratory exacerbations per year. Our secondary outcomes were 3. quality of life, 4. adherence to therapy, 5. cost-benefit analysis, 6. objective change in exercise capacity, 7. additional lung function tests, 8. ventilation scanning, 9. blood oxygen levels, 10. nutritional status, 11. mortality, 12. mucus transport rate and 13. mucus wet or dry weight. We reported outcomes as short-term (seven to 20 days), medium-term (more than 20 days to up to one year) and long-term (over one year).
We included 21 studies (778 participants) comprising seven short-term, eight medium-term and six long-term studies. Studies were conducted in the USA (10), Canada (five), Australia (two), the UK (two), Denmark (one) and Italy (one) with a median of 23 participants per study (range 13 to 166). Participant ages ranged from newborns to 45 years; most studies only recruited children and young people. Sixteen studies reported the sex of participants (375 males; 296 females). Most studies compared modifications of CCPT with a single comparator, but two studies compared three interventions and another compared four interventions. The interventions varied in the duration of treatments, times per day and periods of comparison making meta-analysis challenging. All evidence was very low certainty. Nineteen studies reported the primary outcomes forced expiratory volume in one second (FEV1)and forced vital capacity (FVC), and found no difference in change from baseline in FEV1 % predicted or rate of decline between groups for either measure. Most studies suggested equivalence between CCPT and alternative ACTs, including positive expiratory pressure (PEP), extrapulmonary mechanical percussion, active cycle of breathing technique (ACBT), oscillating PEP devices (O-PEP), autogenic drainage (AD) and exercise. Where single studies suggested superiority of one ACT, these findings were not corroborated in similar studies; pooled data generally concluded that effects of CCPT were comparable to those of alternative ACTs. CCPT versus PEP We are uncertain whether CCPT improves lung function or has an impact on the number of respiratory exacerbations per year compared with PEP (both very low-certainty evidence). There were no analysable data for our secondary outcomes, but many studies provided favourable narrative reports on the independence achieved with PEP mask therapy. CCPT versus extrapulmonary mechanical percussion We are uncertain whether CCPT improves lung function compared with extrapulmonary mechanical percussions (very low-certainty evidence). The annual rate of decline in average forced expiratory flow between 25% and 75% of FVC (FEF25-75) was greater with high-frequency chest compression compared to CCPT in medium- to long-term studies, but there was no difference in any other outcome. CCPT versus ACBT We are uncertain whether CCPT improves lung function compared to ACBT (very low-certainty evidence). Annual decline in FEF25-75 was worse in participants using the FET component of ACBT only (mean difference (MD) 6.00, 95% confidence interval (CI) 0.55 to 11.45; 1 study, 63 participants; very low-certainty evidence). One short-term study reported that directed coughing was as effective as CCPT for all lung function outcomes, but with no analysable data. One study found no difference in hospital admissions and days in hospital for exacerbations. CCPT versus O-PEP We are uncertain whether CCPT improves lung function compared to O-PEP devices (Flutter device and intrapulmonary percussive ventilation); however, only one study provided analysable data (very low-certainty evidence). No study reported data for number of exacerbations. There was no difference in results for number of days in hospital for an exacerbation, number of hospital admissions and number of days of intravenous antibiotics; this was also true for other secondary outcomes. CCPT versus AD We are uncertain whether CCPT improves lung function compared to AD (very low-certainty evidence). No studies reported the number of exacerbations per year; however, one study reported more hospital admissions for exacerbations in the CCPT group (MD 0.24, 95% CI 0.06 to 0.42; 33 participants). One study provided a narrative report of a preference for AD. CCPT versus exercise We are uncertain whether CCPT improves lung function compared to exercise (very low-certainty evidence). Analysis of original data from one study demonstrated a higher FEV1 % predicted (MD 7.05, 95% CI 3.15 to 10.95; P = 0.0004), FVC (MD 7.83, 95% CI 2.48 to 13.18; P = 0.004) and FEF25-75 (MD 7.05, 95% CI 3.15 to 10.95; P = 0.0004) in the CCPT group; however, the study reported no difference between groups (likely because the original analysis accounted for baseline differences).
We are uncertain whether CCPT has a more positive impact on respiratory function, respiratory exacerbations, individual preference, adherence, quality of life, exercise capacity and other outcomes when compared to alternative ACTs as the certainty of the evidence is very low. There was no advantage in respiratory function of CCPT over alternative ACTs, but this may reflect insufficient evidence rather than real equivalence. Narrative reports indicated that participants prefer self-administered ACTs. This review is limited by a paucity of well-designed, adequately powered, long-term studies. This review cannot yet recommend any single ACT above others; physiotherapists and people with CF may wish to try different ACTs until they find an ACT that suits them best.
Main E
,Rand S
《Cochrane Database of Systematic Reviews》
-
Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis.
Chest physiotherapy is widely prescribed to assist the clearance of airway secretions in people with cystic fibrosis (CF). Positive expiratory pressure (PEP) devices provide back pressure to the airways during expiration. This may improve clearance by building up gas behind mucus via collateral ventilation and by temporarily increasing functional residual capacity. The developers of the PEP technique recommend using PEP with a mask in order to avoid air leaks via the upper airways and mouth. In addition, increasing forced residual capacity (FRC) has not been demonstrated using mouthpiece PEP. Given the widespread use of PEP devices, there is a need to determine the evidence for their effect. This is an update of a previously published review.
To determine the effectiveness and acceptability of PEP devices compared to other forms of physiotherapy as a means of improving mucus clearance and other outcomes in people with CF.
We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. The electronic database CINAHL was also searched from 1982 to 2017. Most recent search of the Group's CF Trials Register: 20 February 2019.
Randomised controlled studies in which PEP was compared with any other form of physiotherapy in people with CF. This included, postural drainage and percussion (PDPV), active cycle of breathing techniques (ACBT), oscillating PEP devices, thoracic oscillating devices, bilevel positive airway pressure (BiPaP) and exercise.
Three authors independently applied the inclusion and exclusion criteria to publications, assessed the risk of bias of the included studies and assessed the quality of the evidence using the GRADE recommendations.
A total of 28 studies (involving 788 children and adults) were included in the review; 18 studies involving 296 participants were cross-over in design. Data were not published in sufficient detail in most of these studies to perform any meta-analysis. In 22 of the 28 studies the PEP technique was performed using a mask, in three of the studies a mouthpiece was used with nose clips and in three studies it was unclear whether a mask or mouthpiece was used. These studies compared PEP to ACBT, autogenic drainage (AD), oral oscillating PEP devices, high-frequency chest wall oscillation (HFCWO) and BiPaP and exercise. Forced expiratory volume in one second was the review's primary outcome and the most frequently reported outcome in the studies (24 studies, 716 participants). Single interventions or series of treatments that continued for up to three months demonstrated little or no difference in effect between PEP and other methods of airway clearance on this outcome (low- to moderate-quality evidence). However, long-term studies had equivocal or conflicting results regarding the effect on this outcome (low- to moderate-quality evidence). A second primary outcome was the number of respiratory exacerbations. There was a lower exacerbation rate in participants using PEP compared to other techniques when used with a mask for at least one year (five studies, 232 participants; moderate- to high-quality evidence). In one of the included studies which used PEP with a mouthpiece, it was reported (personal communication) that there was no difference in the number of respiratory exacerbations (66 participants, low-quality evidence). Participant preference was reported in 10 studies; and in all studies with an intervention period of at least one month, this was in favour of PEP. The results for the remaining outcome measures (including our third primary outcome of mucus clearance) were not examined or reported in sufficient detail to provide any high-quality evidence; only very low- to moderate-quality evidence was available for other outcomes. There was limited evidence reported on adverse events; these were measured in five studies, two of which found no events. In a study where infants performing either PEP or PDPV experienced some gastro-oesophageal reflux , this was more severe in the PDPV group (26 infants, low-quality evidence). In PEP versus oscillating PEP, adverse events were only reported in the flutter group (five participants complained of dizziness, which improved after further instructions on device use was provided) (22 participants, low-quality evidence). In PEP versus HFCWO, from one long-term high-quality study (107 participants) there was little or no difference in terms of number of adverse events; however, those in the PEP group had fewer adverse events related to the lower airways when compared to HFCWO (high-certainty evidence). Many studies had a risk of bias as they did not report how the randomisation sequence was either generated or concealed. Most studies reported the number of dropouts and also reported on all planned outcome measures.
The evidence provided by this review is of variable quality, but suggests that all techniques and devices described may have a place in the clinical treatment of people with CF. Following meta-analyses of the effects of PEP versus other airway clearance techniques on lung function and patient preference, this Cochrane Review demonstrated that there was high-quality evidence that showed a significant reduction in pulmonary exacerbations when PEP using a mask was compared with HFCWO. It is important to note that airway clearance techniques should be individualised throughout life according to developmental stages, patient preferences, pulmonary symptoms and lung function. This also applies as conditions vary between baseline function and pulmonary exacerbations.
McIlwaine M
,Button B
,Nevitt SJ
《Cochrane Database of Systematic Reviews》
-
Active cycle of breathing technique for cystic fibrosis.
People with cystic fibrosis (CF) experience chronic airway infections as a result of mucus buildup within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review.
To compare the clinical effectiveness of ACBT with other airway clearance therapies in CF.
We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched clinical trials registries and the reference lists of relevant articles and reviews. Date of last search: 29 March 2021.
We included randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing ACBT with other airway clearance therapies in CF.
Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. We used GRADE to assess our confidence in the evidence assessing quality of life, participant preference, adverse events, forced expiratory volume in one second (FEV1) % predicted, forced vital capacity (FVC) % predicted, sputum weight, and number of pulmonary exacerbations.
Our search identified 99 studies, of which 22 (559 participants) met the inclusion criteria. Eight randomised controlled studies (259 participants) were included in the analysis; five were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 18.7 years). In 13 studies follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of bias in terms of random sequence generation, allocation concealment, and outcome assessor blinding. Due to the nature of the intervention, none of the studies blinded participants or the personnel applying the interventions. However, most of the studies reported on all planned outcomes, had adequate follow up, assessed compliance, and used an intention-to-treat analysis. Included studies compared ACBT with autogenic drainage, airway oscillating devices (AOD), high-frequency chest compression devices, conventional chest physiotherapy (CCPT), positive expiratory pressure (PEP), and exercise. We found no difference in quality of life between ACBT and PEP mask therapy, AOD, other breathing techniques, or exercise (very low-certainty evidence). There was no difference in individual preference between ACBT and other breathing techniques (very low-certainty evidence). One study comparing ACBT with ACBT plus postural exercise reported no deaths and no adverse events (very low-certainty evidence). We found no differences in lung function (forced expiratory volume in one second (FEV1) % predicted and forced vital capacity (FVC) % predicted), oxygen saturation or expectorated sputum between ACBT and any other technique (very low-certainty evidence). There were no differences in the number of pulmonary exacerbations between people using ACBT and people using CCPT (low-certainty evidence) or ACBT with exercise (very low-certainty evidence), the only comparisons to report this outcome.
There is little evidence to support or reject the use of the ACBT over any other airway clearance therapy and ACBT is comparable with other therapies in outcomes such as participant preference, quality of life, exercise tolerance, lung function, sputum weight, oxygen saturation, and number of pulmonary exacerbations. Longer-term studies are needed to more adequately assess the effects of ACBT on outcomes important for people with cystic fibrosis such as quality of life and preference.
Wilson LM
,Saldanha IJ
,Robinson KA
《Cochrane Database of Systematic Reviews》
-
Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis.
McIlwaine M
,Button B
,Dwan K
《Cochrane Database of Systematic Reviews》