Mechanism of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EA.hy926.

来自 PUBMED

作者:

Zhou ZWXie XLZhou SFLi CG

展开

摘要:

Endothelial nitric oxide synthase (eNOS) uncoupling plays a causal role in endothelial dysfunction in many cardiovascular and metabolic diseases. Tanshinone IIA (Tan IIA), an active compound from Salvia miltiorrhiza, has been used to treat cardiovascular and metabolic diseases. However, the effects of Tan IIA on eNOS uncoupling have not been reported. We hypothesize that Tan IIA can regulate eNOS uncoupling in endothelium cells under oxidative stress. The results showed that eNOS-mediated NO generation was significantly decreased, accompanied by increased superoxide production and NOX4 expression. The ratio of eNOS dimer to monomer and NOS cofactor tetrahydrobiopterin (BH4) to 7,8-dihydrobiopterin (BH2) as well as expressions of heat-shock protein of 90kDa (HSP90), GTP cyclohydrolase-1 (GTPCH1) and dihydrofolate reductase (DHFR) were significantly decreased. Tan IIA significantly inhibited superoxide production and expression of NOX4, and increased NO generation and eNOS homodimerization, as well as expressions of HSP90, GTPCH1 and DHFR in a concentration-dependent manner. The ratio of BH4 to BH2 was also elevated by Tan IIA. In addition, Tan IIA significantly inhibited the increase in expression of PI3K in high glucose treated cells. Wortmannin, a PI3K inhibitor, significantly inhibited the high glucose induced NOX4 expression. The results demonstrated that Tan IIA restored eNOS uncoupling induced by high glucose by targeting NADPH oxidase, HSP90, GTPCH1 and DHFR, and PI3K pathway, which leads to reduced intracellular oxidative stress and increased NO generation. Tan IIA may be used as a prototype agent to restore eNOS coupling under certain cardiovascular and metabolic diseases.

收起

展开

DOI:

10.1016/j.ejphar.2012.09.051

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(444)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读