Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3β/NF-κB-mediated protective signaling in mice.

来自 PUBMED

作者:

Xia YRao JYao AZhang FLi GWang XLu L

展开

摘要:

Lithium (an inhibitor of GSK-3β activity) has beneficial effects on ischemia/reperfusion (I/R) injury in the central nervous system, heart and kidney. However, the role of lithium in hepatic I/R injury is unknown. The aim of this study was to assess the effects of lithium on hepatic I/R injury in a mouse model of partial hepatic I/R. Previous studies showed that lithium chloride (LiCl) can phosphorylate residue Ser9, inhibit GSK-3β activity, and improve I/R injury in other organs. In the present study, mice were pretreated with either vehicle or LiCl, which had similar effects on GSK-3β activity. Surprisingly, treatment with LiCl significantly exacerbated hepatic I/R injury, which was determined by serological and histological analyses. Acute and chronic LiCl treatment caused serious damage in hepatic I/R injury, including increased apoptosis and oxidative stress. To gain insight into the mechanism involved in this damage, the activity of nuclear factor-κB (NF-κB) (GSK-3β can regulate the transcriptional complex of NF-κB) was analyzed, which revealed that LiCl treatment significantly down-regulated the activity of NF-κB. The NF-κB-mediated protective genes were then further evaluated, including anti-apoptotic genes (RAF2, cIAP 2, Bfl-1 and cFLIP) and the antioxidant gene MnSOD. The expression of these protective genes was obviously suppressed compared with the vehicle group. Taken together, these findings show that lithium exacerbates hepatic I/R injury by suppressing the expression of GSK-3β/NF-κB-mediated protective genes.

收起

展开

DOI:

10.1016/j.ejphar.2012.09.009

被引量:

15

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(489)

参考文献(0)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读