Comparative effects of pentobarbital on spontaneous and evoked transmitter release from inhibitory and excitatory nerve terminals in rat CA3 neurons.

来自 PUBMED

作者:

Shin MCWakita MIwata SNonaka KKotani NAkaike N

展开

摘要:

Pentobarbital (PB) modulates GABA(A) receptor-mediated postsynaptic responses through various mechanisms, and can directly activate the channel at higher doses. These channels exist both pre- and postsynaptically, and on the soma outside the synapse. PB also inhibits voltage-dependent Na⁺ and Ca²⁺ channels to decrease excitatory synaptic transmission. Just how these different sites of action combine to contribute to the overall effects of PB on inhibitory and excitatory synaptic transmission is less clear. To compare these pre- and postsynaptic actions of PB, we used a 'synaptic bouton' preparation of isolated rat hippocampal CA3 pyramidal neurons where we could measure in single neurons the effects of PB on spontaneous and single bouton evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic currents (sIPSCs, sEPSCs, eIPSCs and eEPSCs), respectively. Low (sedative) concentrations (3-10 μM) of PB increased the frequency and amplitude of sIPSCs and sEPSCs, and also presynaptically increased the amplitude of both eIPSCs and eEPSCs. There was no change in current kinetics at this low concentration. At higher concentrations (30-300 μM), PB decreased the frequency, and increased the amplitude of sIPSCs, and presynaptically decreased the amplitude of eIPSCs. The current decay phase of sIPSCs and eIPSCs was increased. An increase in both frequency and amplitude was seen for sEPSCs, while the eIPSCs was also decreased by a bicuculline-sensitive presynaptic effect. The results confirm the multiple sites of action of PB on inhibitory and excitatory transmission and demonstrate that the most sensitive site of action is on transmitter release, via effects on presynaptic GABA(A) receptors. At low concentrations, however, both glutamate and GABA release is similarly enhanced, making the final effects on neuronal excitability difficult to predict and dependent on the particular systems involved and/or on subtle differences in susceptibility amongst individuals. At higher concentrations, release of both transmitters is decreased, while the postsynaptic effects to increase IPSPs and decrease EPSCs would be expected to both results in reduced neuronal excitability.

收起

展开

DOI:

10.1016/j.brainresbull.2012.09.013

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(438)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读