Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests.

来自 PUBMED

作者:

Calvano CDDe Ceglie CMonopoli AZambonin CG

展开

摘要:

In dairy field, one of the most common frauds is the adulteration of higher value types of milk (sheep's and goat's) with milk of lower value (cow's milk). This illegal practice has an economic advantage for milk producers and poses a threat for consumers' health because of the presence of hidden allergens as, for example, cow milk proteins, in particular, α(s1)-casein and β-lactoglobulin. The urgent need of sensitive techniques to detect this kind of fraud brought to the development of chromatographic, immunoenzymatic, electrophoretic and mass spectrometric assays. In the current work, we present a fast, reproducible and sensitive method based on the direct matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS analysis of milk tryptic digests for the detection of milk adulteration by evaluating specie-specific markers in the peptide profiles. Several pure raw and commercial milk samples and binary mixtures containing cows' and goats', cows' and sheep's and goats' and sheep's milk (concentrations of each milk varied from 0% to 100%) were prepared, and tryptic digests were analyzed by MALDI-TOF MS. The use of the new MALDI matrix α-cyano-4-chlorocinnamic acid allowed to detect cow and goat milk peptide markers up to 5% level of adulteration. Finally, from preliminary data, it seems that the strategy could be successfully applied also to detect similar adulterations in cheese samples.

收起

展开

DOI:

10.1002/jms.2995

被引量:

14

年份:

2012

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(359)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读