Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.
This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.
Wenyong T
,Lu L
,Jun Z
,Weidong Y
,Yun L
... -
《-》
Dosimetric benefits of intensity-modulated radiotherapy and volumetric-modulated arc therapy in the treatment of postoperative cervical cancer patients.
As the advantage of using complex volumetric-modulated arc therapy (VMAT) in the treatment of gynecologic cancer has not yet been fully determined, the purpose of this study was to investigate the dosimetric advantages of VMAT by comparing directly with whole pelvic conformal radiotherapy (CRT) and intensity-modulated radiotherapy (IMRT) in the treatment of 15 postoperative cervical cancer patients. Four-field CRT, seven-field IMRT, and two-arc VMAT plans were generated for each patient with identical objective functions to achieve clinically acceptable dose distribution. Target coverage and OAR sparing differences were investigated through dose-volume histogram (DVH) analysis. Nondosimtric differences between IMRT and VMAT were also compared. Target coverage presented by V95% were 88.9% ± 3.8%, 99.9% ± 0.07%, and 99.9% ± 0.1% for CRT, IMRT, and VMAT, respectively. Significant differences on conformal index (CI) and conformal number (CN) were observed with CIs of 0.37 ± 0.07, 0.55 ± 0.04, 0.61 ± 0.04, and CNs of 0.33 ± 0.06, 0.55 ± 0.04, 0.60 ± 0.04 for CRT, IMRT, and VMAT, respectively. IMRT and VMAT decreased the dose to bladder and rectum significantly compared with CRT. No significant differences on the Dmean, V45, and V30 of small bowel were observed among CRT, IMRT, and VMAT. However, VMAT (10.4 ± 4.8 vs. 19.8 ± 11.0, P = 0.004) and IMRT (12.3 ± 5.0 vs. 19.8 ± 11.0, P = 0.02) decreased V40, increased the Dmax of small bowel and the irradiation dose to femoral heads compared with CRT. VMAT irradiated less dose to bladder, rectum, small bowel and larger volume of health tissue with a lower dose (V5 and V10) compared with IMRT, although the differences were not statistical significant. In conclusion, VMAT and IMRT showed significant dosimetric advantages both on target coverage and OAR sparing compared with CRT in the treatment of postoperative cervical cancer. However, no significant difference between IMRT and VMAT was observed except for slightly better dose conformity, slightly less MU, and significant shorter delivery time achieved for VMAT.
Deng X
,Han C
,Chen S
,Xie C
,Yi J
,Zhou Y
,Zheng X
,Deng Z
,Jin X
... -
《Journal of Applied Clinical Medical Physics》