Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR.
摘要:
Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self-renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia-induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self-renewal of bone marrow-derived mesenchymal stem cells (BM-MSCs) and placental chorionic plate-derived mesenchymal stem cells (CP-MSCs) and to investigate the regulatory mechanisms of self-renewal in each MSC type during hypoxia. The expression of self-renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP-MSCs but were markedly downregulated in BM-MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP-MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof-shaped autophagosome was detected more rapidly in CP-MSCs than in BM-MSCs under hypoxia. Hypoxia induced the expression of SCF in CP-MSCs and increased SCF/c-kit pathway promotes the self-renewal activities of CP-MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP-MSCs than in BM-MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c-kit in the self-renewal and autophagy-regulated mechanisms that promote of MSC survival.
收起
展开
DOI:
10.1002/jcb.24303
被引量:
年份:
2013


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(601)
参考文献(0)
引证文献(37)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无