-
Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens.
Major mastitis pathogens such as Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium spp. and coagulase-negative staphylococci (CNS). The current literature comprises several studies (n=38) detailing analyses with conflicting results as to whether intramammary infections (IMI) with the minor pathogens decrease, increase, or have no effect on the risk of a quarter acquiring a new IMI (NIMI) with a major pathogen. The Canadian Bovine Mastitis Research Network has a large mastitis database derived from a 2-yr data collection on a national cohort of dairy farms, and data from this initiative were used to further investigate the effect of IMI with minor pathogens on the acquisition of new major pathogen infections (defined as a culture-positive quarter sample in a quarter that had been free of that major pathogen in previous samples in the sampling period). Longitudinal milk samplings of clinically normal udders taken over several 6-wk periods as well as samples from cows pre-dry-off and postcalving were used to this end (n=80,397 quarter milk samples). The effects of CNS and Corynebacterium spp. on the major mastitis pathogens Staph. aureus, Strep. uberis, Strep. dysgalactiae, and coliform bacteria (Escherichia coli and Klebsiella spp.) were investigated using risk ratio analyses and multilevel logistic regression models. Quarter-, cow- and herd-level susceptibility parameters were also evaluated and were able to account for the increased susceptibility that exists within herds, cows and quarters, removing it from estimates for the effects of the minor pathogens. Increased quarter-level susceptibility was associated with increased risk of major pathogen NIMI for all pathogens except the coliforms. Increased somatic cell count was consistently associated with elevated risk of new major pathogen infections, but this was assumed to be a result of low sensitivity of bacteriology to diagnose major pathogen NIMI expediently and accurately. The presence of CNS in the sample 2 samplings before the occurrence of a NIMI increased the odds of experiencing a Staph. aureus NIMI 2.0 times, making the presence of CNS a risk factor for acquiring a Staph. aureus NIMI. Even with this extensive data set, power was insufficient to make a definitive statement about the effect of minor pathogen IMI on the acquisition of major pathogen NIMI. Definitively answering questions of this nature are likely to require an extremely large data set dedicated particularly to minor pathogen presence and NIMI with major pathogens.
Reyher KK
,Dohoo IR
,Scholl DT
,Keefe GP
... -
《-》
-
Evaluation of clustering of new intramammary infections in the bovine udder, including the impact of previous infections, herd prevalence, and somatic cell count on their development.
Evidence in the literature exists to support the theory that mastitis and intramammary infection (IMI) tend to cluster within herds, within cows, and within quarters, facts which may have overarching ramifications on mastitis management in modern dairy herds. Most previous studies, however, have been carried out on prevalent IMI instead of new IMI (NIMI), although reducing incidence of NIMI is a major step toward controlling mastitis. The Canadian Bovine Mastitis Research Network (Saint-Hyacinthe, QC, Canada) has a large mastitis database derived from a 2-yr data collection on a national cohort of dairy farms, and data from this initiative were used to investigate the effect of clustering on the acquisition of NIMI. Longitudinal milk samplings of clinically normal udders taken over several 6-wk periods as well as samples from cows pre-dry-off and postcalving were used (n=73,772 quarter milk samples). Multilevel logistic models were used to evaluate the effect of location of IMI in quarters of the bovine udder previous to occurrence of an NIMI with Staphylococcus aureus, coagulase-negative staphylococci, and Corynebacterium spp. Several factors were investigated, including the number and location of quarters infected with the pathogen of interest before occurrence of an NIMI, the number of quarters infected with any other pathogen before occurrence of an NIMI (a measure of susceptibility), somatic cell count of the quarter before occurrence of an NIMI, somatic cell count of the other 3 quarters before occurrence of an NIMI, prevalence of the specific pathogen in the herd, and the average somatic cell count of the herd. The amount of variation occurring at different levels (herd, cow, and quarter) for the various pathogens was also calculated. The presence of an IMI in the ipsilateral quarter was associated with an elevated risk of an NIMI occurring for all pathogens investigated. Risk of an NIMI increased considerably as herd prevalence of the pathogen rose. Substantial clustering was found at all levels, with roughly equal amounts of variation found in all 3 levels for coagulase-negative staphylococci, most variation at the cow-level for Corynebacterium spp., and most variation found at the quarter-level for Staph. aureus. Simulation was used to calculate exact values of intraclass correlation coefficients to estimate clustering within cows and within quarters--these exact values were, for the most part, lower than estimates calculated using the latent variable approach, but also increased as pathogen prevalence and number of infections in a cow at the previous sampling increased. These results of these analyses can be used to inform approaches to preventing NIMI in modern dairy operations.
Reyher KK
,Dohoo IR
,Muckle CA
《-》
-
Examining the effect of intramammary infections with minor mastitis pathogens on the acquisition of new intramammary infections with major mastitis pathogens--a systematic review and meta-analysis.
Major mastitis pathogens such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Streptococcus dysgalactiae, and the coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium bovis and coagulase-negative staphylococci (CNS). The current literature contains several studies detailing analyses with conflicting results as to whether intramammary infection (IMI) with the minor pathogens decreases, increases, or has no effect on the risk of a quarter acquiring a new intramammary infection (NIMI) with a major pathogen. To investigate the available scientific evidence regarding the effect of IMI with minor pathogens on the acquisition of NIMI with major pathogens, a systematic review and meta-analysis were conducted. The total extant English- and French-language literature in electronic databases was searched and all publications cited by relevant papers were investigated. Results from 68 studies were extracted from 38 relevant papers. Random-effects models were used to investigate the effects of CNS and C. bovis on acquisition of new IMI with any of the major pathogens, as well as individually for the minor pathogens and Staph. aureus. Significant heterogeneity among studies exists, some of which could be accounted for by using meta-regression. Overall, observational studies showed no effect, whereas challenge studies showed strong and significant protective effects, specifically when major pathogens were introduced into the mammary gland via methods bypassing the teat end. Underlying risk can account for several unmeasured factors, and studies with higher underlying risk found more protective effects of minor pathogens. Larger doses of challenge organisms reduced the protective effect of minor pathogens, and studies with more stringent diagnostic criteria for pathogen IMI identified less protection. Smaller studies (those utilizing fewer than 40 cows) also showed a greater protective effect than larger studies.
Reyher KK
,Haine D
,Dohoo IR
,Revie CW
... -
《-》
-
Diagnosing intramammary infections: evaluation of composite milk samples to detect intramammary infections.
Composite milk samples, in which milk from all 4 bovine quarters is collected in a single vial, are widely used in many developed dairy industries for detection of intramammary infections (IMI). These samples are more economical for use in culturing protocols than individual quarter samples, and may be useful when considering management options at the cow and herd level. The dilution effect may be problematic, however, resulting in lower sensitivity (Se) in IMI detection on composite samples. Relative Se and specificity (Sp) in composite samples have previously been described for some major pathogens, but because the causative organism for IMI is initially unknown, it is beneficial to investigate the reliability of composite samples for detection of all types of mastitis-causing bacteria. The Canadian Bovine Mastitis Research Network has a large data collection platform-the National Cohort of Dairy Farms-containing a vast amount of data on mastitis in Canada. These data have been used to further investigate the Se and Sp of composite samples in detecting IMI caused by specific mastitis pathogens. Milk samplings of selected cows before dry-off, after calving, and during lactation (n=48,835 samples) were employed to this end. Composite samples showed moderately high Se for Staphylococcus aureus (77.1%, 95% CI=73.3-80.5) and Streptococcus dysgalactiae (73.4%, 95% CI=60.9-83.7), with moderate Se for Streptococcus uberis (62.1%, 95% CI=49.3-73.8) and coagulase-negative staphylococci (59.8%, 95% CI=58.4-61.2). Sensitivities always increased as the number of affected quarters increased. Composite samples also showed high Sp (>97%) for most organisms. Factors such as lactation number and stage of lactation were evaluated for their influence on the Se and Sp of composite sampling, but were only found to be significant for coagulase-negative staphylococci. Predictive values using the herd prevalences found across Canada were calculated and can be useful in field scenarios when composite sampling is employed to assist mastitis management. When used to detect newly occurring IMI in pairs of samples taken before dry-off, post-calving, and also prior to and subsequent to the dry period, composite samples were shown to have lower Se but similar Sp for all pathogens investigated. Composite samples can be used to detect IMI and new IMI in dairy cows, but the Se and Sp of the procedure should be taken into account.
Reyher KK
,Dohoo IR
《-》
-
Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli.
The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.
Taponen S
,Liski E
,Heikkilä AM
,Pyörälä S
... -
《-》