Encapsulation of probiotic bacteria in lamb rennet paste: effects on the quality of Pecorino cheese.

来自 PUBMED

作者:

Santillo AAlbenzio MBevilacqua ACorbo MRSevi A

展开

摘要:

Lamb rennet pastes containing encapsulated Lactobacillus acidophilus and a mix of Bifidobacterium longum and Bifidobacterium lactis were produced for Pecorino cheese manufacture from Gentile di Puglia ewe milk. Cheeses were denoted as RP cheese when made with traditional rennet paste, RP-L cheese when made with rennet paste containing L. acidophilus culture, and RP-B cheese when made with rennet paste containing a mix of B. lactis and B. longum. Biochemical features of Pecorino cheese were studied at 1, 15, 30, 60, and 120 d of cheese ripening. The effect of encapsulation and bead addition to rennet acted on a different way on the viability of probiotic. Lactobacillus acidophilus retained its viability for 4 to 5 d and then showed a fast reduction; on the other hand, B. longum and B. lactis experienced kinetics characterized by an initial death slope, followed by a tail effect due to acquired resistance. At 1 d of ripening, the levels of L. acidophilus and bifidobacteria in cheese were the lowest, and then increased, reaching the highest levels after 30 d; such cell loads were maintained throughout the ripening for L. acidophilus, whereas bifidobacteria experienced a decrease of about 1 log cfu/g at the end of ripening. Enzymatic activities and biochemical features of cheeses were influenced by the type of rennet used for cheesemaking. Greater enzymatic activity was recorded in RP-L and RP-B cheese due to the presence of probiotic bacteria released from alginate beads. A positive correlation was found between enzymatic activities and water-soluble nitrogen and proteose-peptone in RP-B and RP-L cheeses; water-soluble nitrogen and proteose-peptone were the highest in RP-B. Principal component analysis distinguished RP-L from the other cheeses on the basis of the conjugated linoleic acid content, which was higher in the RP-L due to the ability of L. acidophilus to produce conjugated linoleic acid in the cheese matrix.

收起

展开

DOI:

10.3168/jds.2011-4814

被引量:

7

年份:

2012

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(266)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读