BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy.

来自 PUBMED

作者:

Koya RCMok SOtte NBlacketor KJComin-Anduix BTumeh PCMinasyan AGraham NAGraeber TGChodon TRibas A

展开

摘要:

Combining immunotherapy with targeted therapy blocking oncogenic BRAFV600 may result in improved treatments for advanced melanoma. In this study, we developed a BRAFV600E-driven murine model of melanoma, SM1, which is syngeneic to fully immunocompetent mice. SM1 cells exposed to the BRAF inhibitor vemurafenib (PLX4032) showed partial in vitro and in vivo sensitivity resulting from the inhibition of MAPK pathway signaling. Combined treatment of vemurafenib plus adoptive cell transfer therapy with lymphocytes genetically modified with a T-cell receptor (TCR) recognizing chicken ovalbumin (OVA) expressed by SM1-OVA tumors or pmel-1 TCR transgenic lymphocytes recognizing gp100 endogenously expressed by SM1 resulted in superior antitumor responses compared with either therapy alone. T-cell analysis showed that vemurafenib did not significantly alter the expansion, distribution, or tumor accumulation of the adoptively transferred cells. However, vemurafenib paradoxically increased mitogen-activated protein kinase (MAPK) signaling, in vivo cytotoxic activity, and intratumoral cytokine secretion by adoptively transferred cells. Taken together, our findings, derived from 2 independent models combining BRAF-targeted therapy with immunotherapy, support the testing of this therapeutic combination in patients with BRAFV600 mutant metastatic melanoma.

收起

展开

DOI:

10.1158/0008-5472.CAN-11-2837

被引量:

120

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(124)

参考文献(35)

引证文献(120)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读