The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper.

来自 PUBMED

作者:

Sang MKKim KD

展开

摘要:

Previously, we selected a bacterial strain (GSE09) antagonistic to Phytophthora capsici on pepper, which produced a volatile compound (2,4-di-tert-butylphenol), inhibiting the pathogen. In this study, we identified strain GSE09 and characterized some of the biological traits of this strain in relation to its antagonistic properties against P. capsici. In addition, we examined bacterial colonization on the root surface or in rhizosphere soil and the effect of various concentrations of the volatile compound and strain GSE09 on pathogen development and radicle infection as well as radicle growth.  Strain GSE09 was identified as Flavobacterium johnsoniae, which forms biofilms and produces indolic compounds and biosurfactant but not hydrogen cyanide (HCN) with little or low levels of antifungal activity and swimming and swarming activities. Fl. johnsoniae GSE09 effectively colonized on pepper root, rhizosphere, and bulk (pot) soil, which reduced the pathogen colonization in the roots and disease severity in the plants. Various concentrations of 2,4-di-tert-butylphenol or strain GSE09 inhibited pathogen development (mycelial growth, sporulation, and zoospore germination) in I-plate (a plastic plate containing a center partition). In addition, germinated seeds treated with the compound (1-100 μg ml⁻¹) or the strain (10²-10¹⁰ cells ml⁻¹) significantly reduced radicle infection by P. capsici without radicle growth inhibition.  These results indicate that colonization of pepper root and rhizosphere by the Fl. johnsoniae strain GSE09, which can form biofilms and produce indolic compounds, biosurfactant, and 2,4-di-tert-butylphenol, might provide effective biocontrol activity against P. capsici.  To our knowledge, this is the first study demonstrating that the Fl. johnsoniae strain GSE09, as a potential biocontrol agent, can effectively protect pepper plants against P. capsici infection by colonizing the roots.

收起

展开

DOI:

10.1111/j.1365-2672.2012.05330.x

被引量:

48

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(286)

参考文献(0)

引证文献(48)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读