Genetic analysis of multiple antimicrobial resistance in Salmonella isolated from diseased broilers in Egypt.

来自 PUBMED

作者:

Ahmed AMShimamoto T

展开

摘要:

To date, no information has been available on the molecular bases of antimicrobial resistance in Salmonella spp. from poultry in Egypt or even in Africa. Therefore, the objective of this study was to analyze, at the molecular level, the mechanisms of multidrug-resistance in isolates of Salmonella recovered from diseased broilers in Egypt. Twenty-one Salmonella isolates were identified; 13 of these isolates were Salmonella enterica serovar Enteritidis and eight Salmonella enterica serovar Typhimurium. 17 (81%). Salmonella isolates displayed multidrug resistance phenotypes, particularly against ampicillin, streptomycin, spectinomycin, kanamycin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. PCR and DNA sequencing identified class 1 integrons in nine (42.9%) isolates and class 2 integrons in three (14.3%) isolates. The identified resistance genes within class 1 integrons were aminoglycoside adenyltransferase type A, aadA1, aadA2 and aadA5 and dihydrofolate reductase type A, dfrA1, dfrA5, dfrA12, dfrA15 and dfrA17. The β-lactamase encoding genes bla(TEM-1) and bla(CMY-2) and florfenicol resistance gene floR were also identified. Furthermore, the tetracycline resistance gene tet(A) was identified in 14 (66.7%) Salmonella isolates. To the best of our knowledge, this is the first report of the molecular basis of antimicrobial resistance in Salmonella spp. isolated from poultry in Africa.

收起

展开

DOI:

10.1111/j.1348-0421.2012.00429.x

被引量:

16

年份:

2012

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(254)

参考文献(0)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读