-
Use of the Illumina Bovine3K BeadChip in dairy genomic evaluation.
Genomic evaluations using genotypes from the Illumina Bovine3K BeadChip (3K) became available in September 2010 and were made official in December 2010. The majority of 3K-genotyped animals have been Holstein females. Approximately 5% of male 3K genotypes and between 3.7 and 13.9%, depending on registry status, of female genotypes had sire conflicts. The chemistry used for the 3K is different from that of the Illumina BovineSNP50 BeadChip (50K) and causes greater variability in the accuracy of the genotypes. Approximately 2% of genotypes were rejected due to this inaccuracy. A single nucleotide polymorphism (SNP) was determined to be not usable for genomic evaluation based on percentage missing, percentage of parent-progeny conflicts, and Hardy-Weinberg equilibrium discrepancies. Those edits left 2,683 of the 2,900 3K SNP for use in genomic evaluations. The mean minor allele frequencies (MAF) for Holstein, Jersey, and Brown Swiss were 0.32, 0.28, and 0.29, respectively. Eighty-one SNP had both a large number of missing genotypes and a large number of parent-progeny conflicts, suggesting a correlation between call rate and accuracy. To calculate a genomic predicted transmitting ability (GPTA) the genotype of an animal tested on a 3K is imputed to the 45,187 SNP included in the current genomic evaluation based on the 50K. The accuracy of imputation increases as the number of genotyped parents increases from none to 1 to both. The average percentage of imputed genotypes that matched the corresponding actual 50K genotypes was 96.3%. The correlation of a GPTA calculated from a 3K genotype that had been imputed to 50K and GPTA from its actual 50K genotype averaged 0.959 across traits for Holsteins and was slightly higher for Jerseys at 0.963. The average difference in GPTA from the 50K- and 3K-based genotypes across trait was close to 0. The evaluation system has been modified to accommodate the characteristics of the 3K. The low cost of the 3K has greatly increased genotyping of females. Prior to the availability of the 3K (August 2010), female genotyping accounted for 38.7% of the genotyped animals. In the past year, the portion of total genotypes from females across all chip types rose to 59.0%.
Wiggans GR
,Cooper TA
,Vanraden PM
,Olson KM
,Tooker ME
... -
《-》
-
Assets of imputation to ultra-high density for productive and functional traits.
The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations.
Jiménez-Montero JA
,Gianola D
,Weigel K
,Alenda R
,González-Recio O
... -
《-》
-
Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.
Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99% (low call rate) as well as a genotype with a call rate of >99% (high call rate) were calculated by dividing the number of identical SNP genotype calls by the number of SNP that were called for both genotypes. Mean concordance between low- and high-call genotypes was >99% for a low call rate of >90% but decreased to 97% for a call rate of 86 to 90% and to 58% for a call rate of <60%. Edits on call rate reduce the use of incorrect SNP genotypes to calculate genomic evaluations.
Cooper TA
,Wiggans GR
,VanRaden PM
《-》
-
Genomic imputation and evaluation using high-density Holstein genotypes.
Genomic evaluations for 161,341 Holsteins were computed by using 311,725 of 777,962 markers on the Illumina BovineHD Genotyping BeadChip (HD). Initial edits with 1,741 HD genotypes from 5 breeds revealed that 636,967 markers were usable but that half were redundant. Holstein genotypes were from 1,510 animals with HD markers, 82,358 animals with 45,187 (50K) markers, 1,797 animals with 8,031 (8K) markers, 20,177 animals with 6,836 (6K) markers, 52,270 animals with 2,683 (3K) markers, and 3,229 nongenotyped dams (0K) with >90% of haplotypes imputable because they had 4 or more genotyped progeny. The Holstein HD genotypes were from 1,142 US, Canadian, British, and Italian sires, 196 other sires, 138 cows in a US Department of Agriculture research herd (Beltsville, MD), and 34 other females. Percentages of correctly imputed genotypes were tested by applying the programs findhap and FImpute to a simulated chromosome for an earlier population that had only 1,112 animals with HD genotypes and none with 8K genotypes. For each chip, 1% of the genotypes were missing and 0.02% were incorrect initially. After imputation of missing markers with findhap, percentages of genotypes correct were 99.9% from HD, 99.0% from 50K, 94.6% from 6K, 90.5% from 3K, and 93.5% from 0K. With FImpute, 99.96% were correct from HD, 99.3% from 50K, 94.7% from 6K, 91.1% from 3K, and 95.1% from 0K genotypes. Accuracy for the 3K and 6K genotypes further improved by approximately 2 percentage points if imputed first to 50K and then to HD instead of imputing all genotypes directly to HD. Evaluations were tested by using imputed actual genotypes and August 2008 phenotypes to predict deregressed evaluations of US bulls proven after August 2008. For 28 traits tested, the estimated genomic reliability averaged 61.1% when using 311,725 markers vs. 60.7% when using 45,187 markers vs. 29.6% from the traditional parent average. Squared correlations with future data were slightly greater for 16 traits and slightly less for 12 with HD than with 50K evaluations. The observed 0.4 percentage point average increase in reliability was less favorable than the 0.9 expected from simulation but was similar to actual gains from other HD studies. The largest HD and 50K marker effects were often located at very similar positions. The single-breed evaluation tested here and previous single-breed or multibreed evaluations have not produced large gains. Increasing the number of HD genotypes used for imputation above 1,074 did not improve the reliability of Holstein genomic evaluations.
VanRaden PM
,Null DJ
,Sargolzaei M
,Wiggans GR
,Tooker ME
,Cole JB
,Sonstegard TS
,Connor EE
,Winters M
,van Kaam JB
,Valentini A
,Van Doormaal BJ
,Faust MA
,Doak GA
... -
《-》
-
Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada.
Nearly 57,000 single-nucleotide polymorphisms (SNP) genotyped with the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) were investigated to determine usefulness of the associated SNP for genomic prediction. Genotypes were obtained for 12,591 bulls and cows, and SNP were selected based on 5,503 bulls with genotypes from a larger set of SNP. The following SNP were deleted: 6,572 that were monomorphic, 3,213 with scoring problems (primarily because of poor definition of clusters and excess number of clusters), and 3,649 with a minor allele frequency of <2%. Number of SNP for each minor allele frequency class (> or =2%) was fairly uniform (777 to 1,004). For 5 contiguous SNP assigned to chromosome 7, no bulls were heterozygous, which indicated that those SNP are actually on the nonpseudoautosomal portion of the X chromosome. Another 178 SNP that were not assigned to a chromosome but that had many fewer heterozygotes than expected were also assigned to the X chromosome. Existence of Hardy-Weinberg equilibrium was investigated by comparing observed with expected heterozygosity. For 11 SNP, the observed percentage of heterozygous individuals differed from the expected by >15%; therefore, those SNP were deleted. For 2,628 SNP, the genotype at another SNP was highly correlated (i.e., genotypes were identical for >99.5% of bulls), and those were deleted. After edits, 40,874 SNP remained. A parent-progeny conflict was declared when the genotypes were alternate homozygotes. Mean number of conflicts was 2.3 when pedigree was correct and 2,411 when it was incorrect. The sire was genotyped for >93% of animals. Maternal grandsire genotype was similarly checked; however, because alternate homozygotes could be valid, a conflict threshold of 16% was used to indicate a need for further investigation. Genotyping consistency was investigated for 21 bulls genotyped twice with differences primarily from SNP that were not scored in one of the genotypes. Concordance for readable SNP was extremely high (99.96-100%). Thousands of SNP that were polymorphic in Holsteins were monomorphic in Jerseys or Brown Swiss, which indicated that breed-specific SNP sets are required or that all breeds need to be considered in the SNP selection process. Genotypes from the Illumina BovineSNP50 BeadChip are of high accuracy and provide the basis for genomic evaluations in the United States and Canada.
Wiggans GR
,Sonstegard TS
,VanRaden PM
,Matukumalli LK
,Schnabel RD
,Taylor JF
,Schenkel FS
,Van Tassell CP
... -
《-》