Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes.
Combination therapy is required to provide adequate glycemic control in many patients with type 2 diabetes mellitus (T2DM). Because sodium-dependent glucose transporter (SGLT)-1 inhibition results in an increased release of glucagon-like peptide (GLP)-1, and because dipeptidyl peptidase (DPP)-4 inhibitors prevent its inactivation, the 2 mechanisms together provide an intriguing potential combination therapy.
This combination was explored in preclinical models and then tested in patients with T2DM to compare the effects of single-dose LX4211 400 mg and sitagliptin 100 mg, administered as monotherapy or in combination, on GLP-1, peptide tyrosine tyrosine (PYY), gastric inhibitory peptide (GIP), glucose, and insulin.
Preclinical: Obese male C57BL6J mice were assigned to 1 of 4 treatment groups: LX4211 60 mg/kg, sitagliptin 30 mg/kg, LX4211 + sitagliptin, or inactive vehicle. Clinical: This 3-treatment, 3-crossover, randomized, open-label study was conducted at a single center. Patients on metformin monotherapy were washed out from metformin and were randomly assigned to receive sequences of single-dose LX4211, sitagliptin, or the combination. In both studies, blood was collected for the analysis of pharmacodynamic variables (GLP-1, PYY, GIP, glucose, and insulin). In the clinical study, urine was collected to assess urinary glucose excretion.
Preclinical: 120 mice were treated and assessed (5/time point/treatment group). With repeat daily dosing, the combination was associated with apparently synergistic increases in active GLP-1 relative to monotherapy with either agent; this finding was supported by findings from an additional 14-day repeated-dose experiment. Clinical: 18 patients were enrolled and treated (mean age, 49 years; 56% male; 89% white). The LX4211 + sitagliptin combination was associated with significantly increased active GLP-1, total GLP-1, and total PYY; with a significant reduction in total GIP; and with a significantly improved blood glucose level, with less insulin, compared with sitagliptin monotherapy. LX4211 was associated with a significant increase in total GLP-1 and PYY and a reduced total GIP, likely due to a reduction in SGLT1-mediated intestinal glucose absorption, whereas sitagliptin was associated with suppression of all 3 peptides relative to baseline. All treatments were well tolerated, with no evidence of diarrhea with LX4211 treatment.
The findings from the preclinical studies suggest that the LX4211 + sitagliptin combination produced synergistic increases in active GLP-1 after a meal challenge containing glucose. These initial clinical results also suggest that a LX4211 + DPP-4 inhibitor combination may provide an option in patients with T2DM. The potential long-term clinical benefits of such combination treatment need to be confirmed in large clinical trials. ClinicalTrials.gov identifier: NCT01441232.
Zambrowicz B
,Ding ZM
,Ogbaa I
,Frazier K
,Banks P
,Turnage A
,Freiman J
,Smith M
,Ruff D
,Sands A
,Powell D
... -
《-》
Effect of sitagliptin plus metformin on β-cell function, islet integrity and islet gene expression in Zucker diabetic fatty rats.
The combination of metformin and a dipeptidyl peptidase 4 (DPP-4) inhibitor has been shown to be an effective, safe, and well-tolerated treatment for type 2 diabetes. We evaluated β-cell function and morphological changes in islets in Zucker diabetic fatty (ZDF) rats following combined therapy with sitagliptin and metformin and investigated the expression of potentially relevant genes using cDNA microarrays.
Nine-week-old ZDF rats were randomly divided into four treatment groups: no treatment (control); sitagliptin; metformin, and sitagliptin plus metformin. After 5 weeks of treatment, an oral glucose tolerance test was performed and plasma levels of active GLP-1 and islet morphology and gene expression were assessed.
Combination therapy reduced fasting glucose and postprandial plasma glucose levels and increased active GLP-1 levels, compared with monotherapy. Combination therapy also increased insulin secretion, the proportion of small islets, and the intensity of insulin staining. Furthermore, it increased the expression of genes involved in cell survival and growth and downregulated apoptosis-associated genes, relative to monotherapy.
Combination treatment with sitagliptin and metformin preserved β-cell function and β-cell integrity in ZDF rats. This may be associated with the transcriptional activation of anti-apoptotic and pro-survival genes, as well as the suppression of pro-apoptotic genes.
Han SJ
,Choi SE
,Kang Y
,Jung JG
,Yi SA
,Kim HJ
,Lee KW
,Kim DJ
... -
《-》