-
Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters.
Mangiferin, a natural polyphenol, has been shown to have hypolipidemic effect in rat and mouse. However, the mechanism of action is not well understood. This study was conducted to determine the effect and mechanism of action of mangiferin on hyperlipidemia induced in hamsters by a high-fat diet.
Forty male hamsters were randomly assigned to normal control, high-fat control, and high fat with mangiferin (50 and 150 mg/kg BW) groups. Mangiferin treatment significantly decreased final body weight, liver weight and visceral fat-pad weight, serum triglyceride (TG) and total free fatty acid (FFA) concentrations, hepatic TG levels and hepatic and muscle total FFA contents. Mangiferin upregulated mRNA expression of peroxisome proliferator-activated receptor-α (PPAR-α), fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT-1), but downregulated mRNA expression of sterol regulatory element-binding protein 1c (SREBP-1c), acetyl CoA carboxylase (ACC), acyl-CoA:diacylglycerol acyltransferase 2 (DGAT-2) and microsomal triglyceride transfer protein (MTP) in liver. Mangiferin also stimulated mRNA expression of PPAR-α, CD36, CPT-1 and lipoprotein lipase (LPL) in muscle.
The results suggest that mangiferin may ameliorate hypertriglyceridemia partly by modulating the expression levels of genes involved in lipid oxidation and lipogenesis.
Guo F
,Huang C
,Liao X
,Wang Y
,He Y
,Feng R
,Li Y
,Sun C
... -
《-》
-
Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism.
Vitamin D has been reported to be reversely associated with type 2 diabetes and metabolic syndrome and is involved in modulation of lipid metabolism. The purpose of the present study was to determine whether 1,25-dihydroxyvitamin D(3) (1,25(OH)(2) D(3) ) has a protective effect on high fat diet (HFD)-induced hepatic steatosis in rats and to elucidate its underlying molecular mechanisms.
Male Sprague-Dawley (SD) rats were fed with normal fat diet, HFD or HFD with intraperitoneal injection of 1, 2.5 and 5 μg/kg 1,25(OH)(2) D(3) , respectively, each 2 days for 8 weeks. Serum lipid profile and liver triglyceride were determined. Hepatic histology was examined by haematoxylin/eosin (H&E) and Oil Red O stainings. Hepatic gene expression involved in lipogenesis and lipid oxidation was analysed by quantitative reverse transcription-polymerase chain reaction (RT-PCR).
The administration of 1,25(OH)(2) D(3) prevented HFD-induced body weight gain and reduced liver weight. 1,25(OH)(2) D(3) attenuated hepatic steatosis in a dose-dependent manner along with improved serum lipid profile. Furthermore, 1,25(OH)(2) D(3) downregulated mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c) and its target genes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) involved in lipogenesis. Peroxisome proliferator-activated receptor α (PPARα) and its target gene carnitine palmitoyltransferase-1 (CPT-1) involved in hepatic fatty acid (FA) oxidation were upregulated by 1,25(OH)(2) D(3) .
These results suggest that the preventing effect of 1,25(OH)(2) D(3) against HFD-induced hepatic steatosis is related to the inhibition of lipogenesis and the promotion of FA oxidation in rat liver.
Yin Y
,Yu Z
,Xia M
,Luo X
,Lu X
,Ling W
... -
《-》
-
Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism.
Rice has many health-beneficial components for ameliorating obesity, diabetes, and dyslipidemia. However, the effect of cooked rice as a useful carbohydrate source has not been investigated yet; so we hypothesized that cooked rice may have hypolipidemic effects. In the present study, we investigated the effect of cooked rice on hyperlipidemia and on the expression of hepatic genes involved in lipid metabolism. Golden Syrian hamsters were divided into 2 groups and fed a high-fat (15%, wt/wt)/cholesterol (0.5%, wt/wt) diet supplemented with either corn starch (HFD, 54.5% wt/wt) or cooked rice (HFD-CR, 54.5% wt/wt) as the main carbohydrate source for 8 weeks. In the HFD-CR group, the triglyceride and total cholesterol levels in the serum and liver were decreased, and the total lipid, total cholesterol, and bile acid levels in the feces were increased, compared with the HFD group. In the cooked-rice group, the messenger RNA and protein levels of 3-hydroxy-3-methylglutaryl CoA reductase were significantly downregulated; and the messenger RNA and protein levels of the low-density lipoprotein receptor and cholesterol-7α-hydroxylase were upregulated. Furthermore, the expressions of lipogenic genes such as sterol response element binding protein-1, fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase-1 were downregulated, whereas the β-oxidation related genes (carnitine palmitoyl transferase-1, acyl CoA oxidase, and peroxisome proliferator-activated receptor α) were upregulated, in the cooked-rice group. Our results suggest that the hypolipidemic effect of cooked rice is partially mediated by the regulation of hepatic genes involved in lipid metabolism, which results in the suppression of cholesterol and fatty acid synthesis and the enhancement of cholesterol excretion and fatty acid β-oxidation.
Choi WH
,Gwon SY
,Ahn J
,Jung CH
,Ha TY
... -
《-》
-
Ethanolic extract of seabuckthorn (Hippophae rhamnoides L) prevents high-fat diet-induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression.
Phenolic compounds and flavonoids ameliorate bodyweight, blood glucose, and serum lipid profile. Since seabuckthorn (Hippophae rhamnoides L.) is known as a rich source of isoflavones and flavonoids, we hypothesized that ethanolic extract of seabuckthorn leaves (SL) may have anti-obesity and hypoglycemic effects. To investigate the effect of ethanolic extract of SL, 32 C57BL/6J mice were randomly divided into 4 dietary groups, containing 8 mice in each group: normal diet group; high-fat diet (HD) control group; high-fat diet with SL extract, 500 mg/kg body weight (BW) (SL1) group; and high-fat diet with SL extract, 1000 mg/kg BW (SL2) group. After 13 weeks, it was observed that oral administration of SL extract significantly reduced the energy intake; BW gain; epididymal fat pad weight; hepatic triglyceride, hepatic, and serum total cholesterol levels; and serum leptin levels in the SL groups compared to the HD group. However, differences in serum triglyceride and insulin levels in the SL groups were not significant in comparison to the HD group. The hepatic mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase 1 along with PPAR-γ were significantly increased in SL groups, whereas the level of acetyl-CoA carboxylase was significantly reduced in SL groups compared to HD group. Our results indicated that SL is effective in preventing BW gain and fat accumulation in the liver; it also reduced adipose tissue mass, hepatic lipid profile, and serum leptin level in the mouse. Together, these observations suggest that SL is a potential agent to study in the management of obesity and related disorders.
Pichiah PB
,Moon HJ
,Park JE
,Moon YJ
,Cha YS
... -
《-》
-
Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver.
Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation.
Xing X
,Li D
,Chen D
,Zhou L
,Chonan R
,Yamahara J
,Wang J
,Li Y
... -
《-》