Performance of first-trimester combined test for Down syndrome in different maternal age groups: reason for adjustments in screening policy?

来自 PUBMED

作者:

Engels MAHeijboer ACBlankenstein MAvan Vugt JM

展开

摘要:

To evaluate the performance of the first-trimester combined test (FCT) in different maternal age groups and to discuss whether adjustments in screening policies should be made. In this retrospective study data (n = 26 274) from a fetal medicine center on FCT (maternal age, fetal NT, free β-human chorionic gonadotrophin, pregnancy-associated plasma protein-A) were studied. 70.6% of cases was <36 years and 43% of the Down syndrome (DS) cases were detected in this age group. For women <36 years and advanced maternal age (AMA) women (≥36 years) detection rate (DR) and false positive rate (FPR) were 94.5% and 4.1%, and 95.8% and 13.0%, respectively (cut-off 1:200). Lowering the cut-off showed an improved balance in DR and FPR. With increasing maternal age FPR and DR increased and odds of being affected given a positive result (OAPR) decreased. FCT is effective in women <36 and ≥36 years. The balance between FPR and DR is more favourable in women <36 years with comparable OAPR. Although FPR increases with increasing maternal age, performance of FCT in AMA women is more effective than screening based on maternal age alone. Lowering the cut-off to 1:100 in AMA women is suggested to improve screening performance. Routinely offering diagnostic testing to AMA women as a screening policy for the detection of DS seems not reasonable.

收起

展开

DOI:

10.1002/pd.2873

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(119)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读