8-Oxoguanine DNA glycosylase 1 (OGG1) from the copepod Tigriopus japonicus: molecular characterization and its expression in response to UV-B and heavy metals.

来自 PUBMED

作者:

Kim BMRhee JSSeo JSKim ICLee YMLee JS

展开

摘要:

8-Oxoguanine DNA glycosylase 1 (EC 3.2.2.23) is encoded by OGG1 gene and plays a key role in removing 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA lesion by reactive oxygen species (ROS). To identify and characterize OGG1 gene (TJ-OGG1) in the copepod Tigriopus japonicus, the full-length cDNA sequence, genomic structure, and promoter region was analyzed. In addition, to investigate transcriptional change of TJ-OGG1 mRNA under oxidative stress conditions, T. japonicus were exposed to environmental oxidative inducers, H(2)O(2), UV-B, and heavy metals (Cd, Cu, and Zn), respectively. The full-length cDNA of TJ-OGG1 gene was 1708 bp in length, encoding 343 amino acid residues. The deduced amino acid sequences of TJ-OGG1 showed a 56% similarity with human. Two conserved motifs (HhH and PVD loop) and two conserved residues (lysine and aspartic acid) in active sites were also observed. TJ-OGG1 genome structure contained six exons and five introns and putative transcription factor binding sites such as Nrf-2, p53, ERE-half sites, and XRE were detected on the promoter region. TJ-OGG1 mRNA level was increased at approximately three-fold (P<0.05) at 1mM and approximately 4-fold (P<0.01) at 10mM of H(2)O(2), respectively. UV-B enhanced the expression of TJ-OGG1 mRNA at 15kJ/m(2) (P<0.05) and more (P<0.001). In a time-course experiment, TJ-OGG1 gene was highly transcribed within 12h after exposure of 10 kJ/m(2) (P<0.01) and 20 kJ/m(2) (P<0.001). The expression of TJ-OGG1 mRNA after exposure to Cu and Cd for 96 h was significantly up-regulated at 0.1 μg/L and then remarkably reduced in a dose-dependent manner. Their transcript levels did not change at low dose (0.1 and 1 μg/L) but were dose-dependently down-regulated at high dose (10 and 100 μg/L). These findings suggest that H(2)O(2), UV-B, and heavy metals induce oxidative stress and generate oxidatively damaged DNA. Consequently, the enhanced TJ-OGG1 gene expression would be associated with active involvement of TJ-OGG1 gene in DNA repair process as a cellular protection mechanism. This is the first report on the cloning and characterization of OGG1 gene in aquatic animals. This study is helpful for a better understanding of the molecular mechanisms of cellular protection against various environmental oxidative stress inducers such as UV-B and heavy metals in aquatic invertebrates.

收起

展开

DOI:

10.1016/j.cbpc.2011.09.010

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(498)

参考文献(0)

引证文献(2)

来源期刊

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY

影响因子:4.515

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读