Mechanisms underlying somatostatin receptor 2 down-regulation of vascular endothelial growth factor expression in response to hypoxia in mouse retinal explants.

来自 PUBMED

作者:

Mei SCammalleri MAzara DCasini GBagnoli PDal Monte M

展开

摘要:

Hypoxia is a trigger of VEGF expression, the primary cause of retinal pathologies characterized by neovascularization. During hypoxia, transcription factors such as STAT3 and HIF-1 promote the increase in VEGF expression. Octreotide, a somatostatin receptor 2 (sst(2) )-preferring agonist, reduces retinal VEGF expression and neovascularization. To investigate the intracellular pathways linking sst(2) activation to the inhibition of hypoxia-induced VEGF up-regulation, we used pharmacological approaches and siRNA in mouse retinal explants cultured in normoxia or hypoxia. In hypoxic explants in which STAT3 or HIF-1 was inhibited, we observed the existence of reciprocal interactions between STAT3 and HIF-1, which synergistically induced VEGF expression. Octreotide prevented hypoxia-induced activation of STAT3 and HIF-1, and the downstream increase in VEGF expression, as evaluated in hypoxic explants treated with pharmacological inhibitors of STAT3 or HIF-1 and in normoxic explants in which pharmacological activators of STAT3 or HIF-1 were used to mimic a hypoxia-like response. The effect of octreotide on STAT3 activation is in part indirect, through the blockade of VEGFR-2 phosphorylation. The effect of octreotide on STAT3, HIF-1, VEGFR-2, and VEGF required Src homology region 2 domain-containing phosphatase 1 (SHP-1). In hypoxic extracts, octreotide induced SHP-1 phosphorylation and activation, and inhibiting SHP-1 abolished the octreotide effect on STAT3, HIF-1, VEGFR-2, and VEGF. The central role of SHP-1 in the modulation of STAT3 and HIF-1 was confirmed in normoxic explants in which pharmacologically activated SHP-1 prevented the effect of STAT3 or HIF-1 activation. Immunohistochemical studies showed that under hypoxia sst(2) and VEGF are expressed by retinal vessels, thus indicating a possible direct effect of octreotide on VEGF-containing endothelial cells. These data clarify the mechanism by which octreotide prevents hypoxia-induced VEGF up-regulation and support the effectiveness of octreotide in treatment of oxygen-induced retinopathies. These results may have implications in designing therapies targeting STAT3 and/or HIF-1 aimed at preventing retinal neovascularization.

收起

展开

DOI:

10.1002/path.3006

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(218)

参考文献(0)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读