Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland.

来自 PUBMED

作者:

Zhang XLiu XLiu SLiu FChen LXu GZhong CSu PCao Z

展开

摘要:

The aim of this study was to determine the enhancement of Scirpus triqueter in the dissipation of pyrene and the interaction of pyrene with plant, soil enzymes and microbial community. The results indicated that the dissipation ratios of pyrene in the rhizospheric and non-rhizospheric soil were 64.65 ± 3.86% and 54.49 ± 2.74%, respectively, and were higher than that in the unplanted soil (42.60 ± 0.71%) at 80 d after planting S. triqueter. The pyrene was toxic to S. triqueter, as evidenced by growth inhibition in height, diameter, shoot number and biomass during the planting period. The activities of dehydrogenase decreased significantly at the presence of pyrene in soils, and increased remarkably with the introduction of S. triqueter. It was found that the pyrene addition increased the ratios of fungal/total fatty acids and gram-positive/gram-negative, but the presence of S. triqueter decreased the ratios of gram-positive/gram-negative. A larger stress level was found in the pyrene treated soils without S. triqueter. The ratio of aerobic/anaerobic bacteria decreased with increasing pyrene concentration, but increased when S. triqueter was planted. The principal analysis of phospholipid fatty acid signatures revealed that microbial community structures in the rhizospheric and non-rhizospheric soil were similar, but different from those in the unplanted and control soil.

收起

展开

DOI:

10.1016/j.jhazmat.2011.07.094

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(91)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读