Relationship between sensorimotor gating deficits and dopaminergic neuroanatomy in Nurr1-deficient mice.

来自 PUBMED

作者:

Vuillermot SFeldon JMeyer U

展开

摘要:

Nurr1 (NR4A2) is an orphan nuclear receptor highly essential for the development and maintenance of dopaminergic neurons. Reduced expression of Nurr1 has been linked to the etiopathogenesis of Parkinson's disease and other dopamine-related disorders such as schizophrenia. Recent experimental work in mice with a heterozygous constitutive deletion of Nurr1 has revealed that this genetic manipulation leads to the presence of sensorimotor gating dysfunctions in the form of reduced prepulse inhibition of the acoustic startle reflex. However, the neuronal substances for this behavioral manifestation remain essentially unknown. Since converging evidence supports a key role of the central dopamine system in the regulation of prepulse inhibition, we hypothesized that the emergence of prepulse inhibition deficits in adult Nurr1-deficient mice may be linked to dopaminergic neuroanatomical changes. To test this hypothesis, we followed a within-subject approach in which sensorimotor gating performance was correlated with post-mortem expression of several dopaminergic markers in relevant striatal and midbrain regions. We found that prepulse inhibition deficits in Nurr1-deficient mice were paralleled by reduced numbers of substantia nigra dopamine cells expressing tyrosine hydroxylase, and by decreased tyrosine hydroxylase and dopamine transporter immunoreactivity in ventral parts of the striatum. Most interestingly, we also revealed a striking negative correlation between prepulse inhibition levels and tyrosine hydroxylase immunoreactivity in Nurr1-deficient mice in dorsal striatal regions (caudate putamen) and ventral striatal regions (nucleus accumbens core and shell). Our findings thus suggest that the emergence of prepulse inhibition deficits induced by heterozygous constitutive deletion of Nurr1 is, at least in part, related to alterations in presynaptic components of the striatal dopamine system. The constellation of neuroanatomical and behavioral alterations in Nurr1-deficient mice observed here confirms previous impressions that the consequences of Nurr1 down-regulation capture neuronal and behavioral pathologies relevant especially for (but not limited to) Parkinson's disease.

收起

展开

DOI:

10.1016/j.expneurol.2011.07.008

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(388)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读