MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data.

来自 PUBMED

作者:

Ballardini RBenevento MArrigoni GPattini LRoda A

展开

摘要:

Liquid chromatography-mass spectrometry (LC-MS) has become an important analytical tool for quantitative proteomics and biomarker discovery. In the label-free differential LC-MS approach computational methods are required for an accurate alignment of peaks extrapolated from the experimental raw data accounting for retention time and m/z signals intensity, which are strongly affected by sample matrix and instrumental performance. A novel procedure "MassUntangler" for pairwise alignment has been developed, relying on a pattern-based matching algorithm integrated with filtering algorithms in a multi-step approach. The procedure has been optimized employing a two-step approach. Firstly, low-complexity LC-MS data derived from the enzymatic digestion of two standard proteins have been analyzed. Then, the algorithm's performance has been evaluated by comparing the results with other achieved using state-of-the-art alignment tools. In the second step, our algorithm has been used for the alignment of high-complexity LC-MS data consisting of peptides obtained by an Escherichia coli lysate available from a public repository previously used for the comparison of other alignment tools. MassUntangler gave excellent results in terms of precision scores (from 80% to 93%) and recall scores (from 68% to 89%), showing performances similar and even better than the previous developed tools. Considering the mass spectrometry sensitivity and accuracy, this approach allows the identification and quantification of peptides present in a biological sample at femtomole level with high confidence. The procedure's capability of aligning LC-MS data previously corrected for distortion in retention time has been studied through a hybrid approach, in which MassUntangler was interfaced with the OpenMS TOPP tool MapAligner. The hybrid aligner yielded better results, showing that an integration of different bioinformatic approaches for accurate label-free LC-MS data alignment should be used.

收起

展开

DOI:

10.1016/j.chroma.2011.06.062

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(507)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读