Cochrane Review: Interventions for the interruption or reduction of the spread of respiratory viruses.
Viral epidemics or pandemics such as of influenza or severe acute respiratory syndrome (SARS) pose a significant threat. Antiviral drugs and vaccination may not be adequate to prevent catastrophe in such an event.
To systematically review the evidence of effectiveness of interventions to interrupt or reduce the spread of respiratory viruses (excluding vaccines and antiviral drugs, which have been previously reviewed).
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2006, issue 4); MEDLINE (1966 to November 2006); OLDMEDLINE (1950 to 1965); EMBASE (1990 to November 2006); and CINAHL (1982 to November 2006).
We scanned 2300 titles, excluded 2162 and retrieved the full papers of 138 trials, including 49 papers of 51 studies. The quality of three randomised controlled trials (RCTs) was poor; as were most cluster RCTs. The observational studies were of mixed quality. We were only able to meta-analyse case-control data. We searched for any interventions to prevent viral transmission of respiratory viruses (isolation, quarantine, social distancing, barriers, personal protection and hygiene). Study design included RCTs, cohort studies, case-control studies, cross-over studies, before-after, and time series studies.
We scanned the titles, abstracts and full text articles using a standardised form to assess eligibility. RCTs were assessed according to randomisation method, allocation generation, concealment, blinding, and follow up. Non-RCTs were assessed for the presence of potential confounders and classified as low, medium, and high risk of bias.
The highest quality cluster RCTs suggest respiratory virus spread can be prevented by hygienic measures around younger children. Additional benefit from reduced transmission from children to other household members is broadly supported in results of other study designs, where the potential for confounding is greater. The six case-control studies suggested that implementing barriers to transmission, isolation, and hygienic measures are effective at containing respiratory virus epidemics. We found limited evidence that the more uncomfortable and expensive N95 masks were superior to simple surgical masks. The incremental effect of adding virucidals or antiseptics to normal handwashing to decrease respiratory disease remains uncertain. The lack of proper evaluation of global measures such as screening at entry ports and social distancing prevent firm conclusions about these measures.
Many simple and probably low-cost interventions would be useful for reducing the transmission of epidemic respiratory viruses. Routine long-term implementation of some of the measures assessed might be difficult without the threat of a looming epidemic.
Interventions to interrupt or reduce the spread of respiratory viruses Although respiratory viruses usually only cause minor disease, they can cause epidemics. Approximately 10% to 15% of people worldwide contract influenza annually, with attack rates as high as 50% during major epidemics. Global pandemic viral infections have been devastating because of their wide spread. In 2003 the severe acute respiratory syndrome (SARS) epidemic affected ˜8,000 people, killed 780, and caused an enormous social and economic crisis. A new avian influenza pandemic caused by the H5N1 strain might be more catastrophic. Single measures (particularly the use of vaccines or antiviral drugs) may be insufficient to interrupt the spread.We found 51 studies including randomised controlled trials (RCTs) and observational studies with a mixed risk of bias.Respiratory virus spread might be prevented by hygienic measures around younger children. These might also reduce transmission from children to other household members. Implementing barriers to transmission, isolation, and hygienic measures may be effective at containing respiratory virus epidemics. There was limited evidence that (more uncomfortable and expensive) N95 masks were superior to simple ones. Adding virucidals or antiseptics to normal handwashing is of uncertain benefit. There is insufficient evaluation of global measures such as screening at entry ports and social distancing.
Jefferson T
,Foxlee R
,Del Mar C
,Dooley L
,Ferroni E
,Hewak B
,Prabhala A
,Nair S
,Rivetti A
... -
《-》
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Viral epidemics or pandemics of acute respiratory infections (ARIs) pose a global threat. Examples are influenza (H1N1) caused by the H1N1pdm09 virus in 2009, severe acute respiratory syndrome (SARS) in 2003, and coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in 2019. Antiviral drugs and vaccines may be insufficient to prevent their spread. This is an update of a Cochrane Review published in 2007, 2009, 2010, and 2011. The evidence summarised in this review does not include results from studies from the current COVID-19 pandemic.
To assess the effectiveness of physical interventions to interrupt or reduce the spread of acute respiratory viruses.
We searched CENTRAL, PubMed, Embase, CINAHL on 1 April 2020. We searched ClinicalTrials.gov, and the WHO ICTRP on 16 March 2020. We conducted a backwards and forwards citation analysis on the newly included studies.
We included randomised controlled trials (RCTs) and cluster-RCTs of trials investigating physical interventions (screening at entry ports, isolation, quarantine, physical distancing, personal protection, hand hygiene, face masks, and gargling) to prevent respiratory virus transmission. In previous versions of this review we also included observational studies. However, for this update, there were sufficient RCTs to address our study aims. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used GRADE to assess the certainty of the evidence. Three pairs of review authors independently extracted data using a standard template applied in previous versions of this review, but which was revised to reflect our focus on RCTs and cluster-RCTs for this update. We did not contact trialists for missing data due to the urgency in completing the review. We extracted data on adverse events (harms) associated with the interventions.
We included 44 new RCTs and cluster-RCTs in this update, bringing the total number of randomised trials to 67. There were no included studies conducted during the COVID-19 pandemic. Six ongoing studies were identified, of which three evaluating masks are being conducted concurrent with the COVID pandemic, and one is completed. Many studies were conducted during non-epidemic influenza periods, but several studies were conducted during the global H1N1 influenza pandemic in 2009, and others in epidemic influenza seasons up to 2016. Thus, studies were conducted in the context of lower respiratory viral circulation and transmission compared to COVID-19. The included studies were conducted in heterogeneous settings, ranging from suburban schools to hospital wards in high-income countries; crowded inner city settings in low-income countries; and an immigrant neighbourhood in a high-income country. Compliance with interventions was low in many studies. The risk of bias for the RCTs and cluster-RCTs was mostly high or unclear. Medical/surgical masks compared to no masks We included nine trials (of which eight were cluster-RCTs) comparing medical/surgical masks versus no masks to prevent the spread of viral respiratory illness (two trials with healthcare workers and seven in the community). There is low certainty evidence from nine trials (3507 participants) that wearing a mask may make little or no difference to the outcome of influenza-like illness (ILI) compared to not wearing a mask (risk ratio (RR) 0.99, 95% confidence interval (CI) 0.82 to 1.18. There is moderate certainty evidence that wearing a mask probably makes little or no difference to the outcome of laboratory-confirmed influenza compared to not wearing a mask (RR 0.91, 95% CI 0.66 to 1.26; 6 trials; 3005 participants). Harms were rarely measured and poorly reported. Two studies during COVID-19 plan to recruit a total of 72,000 people. One evaluates medical/surgical masks (N = 6000) (published Annals of Internal Medicine, 18 Nov 2020), and one evaluates cloth masks (N = 66,000). N95/P2 respirators compared to medical/surgical masks We pooled trials comparing N95/P2 respirators with medical/surgical masks (four in healthcare settings and one in a household setting). There is uncertainty over the effects of N95/P2 respirators when compared with medical/surgical masks on the outcomes of clinical respiratory illness (RR 0.70, 95% CI 0.45 to 1.10; very low-certainty evidence; 3 trials; 7779 participants) and ILI (RR 0.82, 95% CI 0.66 to 1.03; low-certainty evidence; 5 trials; 8407 participants). The evidence is limited by imprecision and heterogeneity for these subjective outcomes. The use of a N95/P2 respirator compared to a medical/surgical mask probably makes little or no difference for the objective and more precise outcome of laboratory-confirmed influenza infection (RR 1.10, 95% CI 0.90 to 1.34; moderate-certainty evidence; 5 trials; 8407 participants). Restricting the pooling to healthcare workers made no difference to the overall findings. Harms were poorly measured and reported, but discomfort wearing medical/surgical masks or N95/P2 respirators was mentioned in several studies. One ongoing study recruiting 576 people compares N95/P2 respirators with medical surgical masks for healthcare workers during COVID-19. Hand hygiene compared to control Settings included schools, childcare centres, homes, and offices. In a comparison of hand hygiene interventions with control (no intervention), there was a 16% relative reduction in the number of people with ARIs in the hand hygiene group (RR 0.84, 95% CI 0.82 to 0.86; 7 trials; 44,129 participants; moderate-certainty evidence), suggesting a probable benefit. When considering the more strictly defined outcomes of ILI and laboratory-confirmed influenza, the estimates of effect for ILI (RR 0.98, 95% CI 0.85 to 1.13; 10 trials; 32,641 participants; low-certainty evidence) and laboratory-confirmed influenza (RR 0.91, 95% CI 0.63 to 1.30; 8 trials; 8332 participants; low-certainty evidence) suggest the intervention made little or no difference. We pooled all 16 trials (61,372 participants) for the composite outcome of ARI or ILI or influenza, with each study only contributing once and the most comprehensive outcome reported. The pooled data showed that hand hygiene may offer a benefit with an 11% relative reduction of respiratory illness (RR 0.89, 95% CI 0.84 to 0.95; low-certainty evidence), but with high heterogeneity. Few trials measured and reported harms. There are two ongoing studies of handwashing interventions in 395 children outside of COVID-19. We identified one RCT on quarantine/physical distancing. Company employees in Japan were asked to stay at home if household members had ILI symptoms. Overall fewer people in the intervention group contracted influenza compared with workers in the control group (2.75% versus 3.18%; hazard ratio 0.80, 95% CI 0.66 to 0.97). However, those who stayed at home with their infected family members were 2.17 times more likely to be infected. We found no RCTs on eye protection, gowns and gloves, or screening at entry ports.
The high risk of bias in the trials, variation in outcome measurement, and relatively low compliance with the interventions during the studies hamper drawing firm conclusions and generalising the findings to the current COVID-19 pandemic. There is uncertainty about the effects of face masks. The low-moderate certainty of the evidence means our confidence in the effect estimate is limited, and that the true effect may be different from the observed estimate of the effect. The pooled results of randomised trials did not show a clear reduction in respiratory viral infection with the use of medical/surgical masks during seasonal influenza. There were no clear differences between the use of medical/surgical masks compared with N95/P2 respirators in healthcare workers when used in routine care to reduce respiratory viral infection. Hand hygiene is likely to modestly reduce the burden of respiratory illness. Harms associated with physical interventions were under-investigated. There is a need for large, well-designed RCTs addressing the effectiveness of many of these interventions in multiple settings and populations, especially in those most at risk of ARIs.
Jefferson T
,Del Mar CB
,Dooley L
,Ferroni E
,Al-Ansary LA
,Bawazeer GA
,van Driel ML
,Jones MA
,Thorning S
,Beller EM
,Clark J
,Hoffmann TC
,Glasziou PP
,Conly JM
... -
《Cochrane Database of Systematic Reviews》