Effects of the potassium ion channel modulators BMS-204352 Maxipost and its R-enantiomer on salicylate-induced tinnitus in rats.

来自 PUBMED

作者:

Lobarinas EDalby-Brown WStolzberg DMirza NRAllman BLSalvi R

展开

摘要:

Currently, there are no effective pharmacological therapies for chronic tinnitus despite a number of efforts from clinical studies and more recently, studies in animals using compounds to enhance endogenous inhibition or reduce central hyperactivity. The purpose of the current study was to evaluate the therapeutic efficacy of a novel anxiolytic with potassium channel activity in suppressing salicylate induced tinnitus in animals. Kv7 potassium channels are present in the peripheral and central auditory system where they are believed to modulate neural activity. Maxipost, a compound which attenuates hyperexcitability via positive modulation of Kv7.2-Kv7.5 channels, was administered to rats with behavioral evidence of salicylate induced tinnitus. Tinnitus was measured using our previously established animal model, Schedule Induced Polydipsia Avoidance Conditioning, a paradigm where rats were conditioned to drink only during quiet and suppress drinking in the presence of sound. Salicylate alone significantly suppressed licks in quiet but had no effect on licks in sound; results consistent with the presence of tinnitus. Maxipost at 10 mg/kg suppressed behavioral evidence of tinnitus as it completely reversed salicylate's suppression of licks in quiet. Unexpectedly, the R-enantiomer of Maxipost, R-Maxipost, which has no anxiolytic effects and negatively modulates Kv7.2-Kv7.5, also suppressed behavioral evidence of tinnitus. Our original hypothesis was that Kv7.2-Kv7.5 channels might play a key role in tinnitus generation and that Maxipost but not R-Maxipost would suppress tinnitus; however, it appears that a shared mechanism between Maxipost and R-xMaxipost, such as inhibition of Kv7.1 channels or activation of BK channels or some novel mechanism common to both compounds, underlies salicylate induced tinnitus as both compounds completely abolished behavioral evidence of tinnitus in a dose-dependent manner. Further studies with specific BK channel agonists/antagonists are necessary to determine the contribution of these channels to other forms of tinnitus or determine novel targets that could be related to tinnitus.

收起

展开

DOI:

10.1016/j.physbeh.2011.05.022

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(120)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读