Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations.

来自 PUBMED

作者:

Pereira FBGuimarães PMTeixeira JADomingues L

展开

摘要:

The application and physiological background of two industrial Saccharomyces cerevisiae strains, isolated from harsh industrial environments, were studied in Very High Gravity (VHG) bio-ethanol fermentations. VHG laboratory fermentations, mimicking industrially relevant conditions, were performed with PE-2 and CA1185 industrial strains and the CEN.PK113-7D laboratory strain. The industrial isolates produced remarkable high ethanol titres (>19%, v/v) and accumulated an increased content of sterols (2 to 5-fold), glycogen (2 to 4-fold) and trehalose (1.1-fold), relatively to laboratory strain. For laboratory and industrial strains, a sharp decrease in the viability and trehalose concentration was observed above 90 g l⁻¹ and 140 g l⁻¹ ethanol, respectively. PE-2 and CA1185 industrial strains presented important physiological differences relatively to CEN.PK113-7D strain and showed to be more prepared to cope with VHG stresses. The identification of a critical ethanol concentration above which viability and trehalose concentration decrease significantly is of great importance to guide VHG process engineering strategies. This study contributes to the improvement of VHG processes by identifying yeast isolates and gathering yeast physiological information during the intensified fermentation process, which, besides elucidating important differences between these industrial and laboratory strains, can drive further process optimization.

收起

展开

DOI:

10.1016/j.jbiosc.2011.03.022

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(219)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读