Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats.

来自 PUBMED

作者:

Qiu LBZhou YWang QYang LLLiu HQXu SLQi YHDing GRGuo GZ

展开

摘要:

Previously we found that exposure to electromagnetic pulse (EMP) induced an increase in blood-brain-barrier (BBB) permeability and the degradation of tight junction protein ZO-1 in rats. Matrix metalloproteinases (MMPs), in particular gelatinases (MMP-2 and MMP-9), play a key role in degradation of tight junction proteins, are known mediators of BBB compromise. We hypothesized that the degradation of ZO-1 by gelatinases contributed to EMP-induced BBB opening. To test this hypothesis, the mRNA level of ZO-1, protein levels of MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) were detected in rat cerebral cortex after exposing rats to EMP at 200 kV/m for 200 pulses. It was found that the mRNA level of ZO-1 was unaltered at different time points after EMP exposure. The protein levels of MMP-2 and MMP-9 significantly increased at 3 h and 0.5 h, respectively. However, TIMP-1 (inhibitor of MMP-9) and TIMP-2 (inhibitor of MMP-2) only moderately increased after EMP exposure. In addition, in situ zymography results showed that the gelatinase activity increased in cerebral microvessels at 3 h after EMP exposure. When rats were treated with gelatinases inhibitor (SB-3CT) before EMP exposure, the EMP-induced BBB opening was attenuated and the ZO-1 degradation was reversed. Our results suggested that EMP-induced BBB opening was related to gelatinase mediated ZO-1 degradation.

收起

展开

DOI:

10.1016/j.tox.2011.03.019

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(322)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读