Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth.
摘要:
The decoction of the whole plant of Elephantopus mollis Kunth. is traditionally consumed to treat various free radical-mediated diseases including cancer and diabetes. This study was initiated to determine whether the most effective antioxidant compound isolated from the whole plant of Elephantopus mollis can also contribute to its claimed traditional values as anticancer and antidiabetes agents. An active antiradical phenolic compound (3,4-di-O-caffeoyl quinic acid) was isolated from the methanol extract (with the highest in polyphenolic content) and their antioxidant activities were compared using four different assays, that are DPPH, FRAP, metal chelating, and β-carotene bleaching tests. The compound was also evaluated for its cytotoxic activity, apoptotic induction and anti-glucosidase efficacies using methylene blue, DeadEnd™ assay and α-glucosidase assays, respectively. The compound acted as a greater primary antioxidant than its methanol extract, by having higher ferric reducing activity (EC(50) 2.18±0.05 μg/ml), β-carotene bleaching activity (EC(50) 23.85±0.65 μg/ml) and DPPH scavenging activity (EC(50) 68.91±5.44μg/ml), whereas the methanol extract exhibited higher secondary antioxidant activity as a metal chelator with lower EC(50) value (49.39±3.68 μg/ml) than the compound. Cytotoxicity screening of this compound exhibited a remarkable dose-dependent inhibitory effect on NCI-H23 (human lung adenocarcinoma) cell lines (EC(50) 3.26±0.35 μg/ml) and was found to be apoptotic in nature based on a clear indication of DNA fragmentation. This compound also displayed a concentration-dependent α-glucosidase inhibition with EC(50) 241.80±14.29 μg/ml. The findings indicate the major role of 3,4-di-O-caffeoyl quinic acid to antioxidant capacities of Elephantopus mollis extracts. The compound also exerted apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects and is thus a promising non toxic agent in treating cancer and type 2 diabetes mellitus.
收起
展开
DOI:
10.1016/j.jep.2011.04.001
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(487)
参考文献(0)
引证文献(20)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无