Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

来自 PUBMED

作者:

Qian ZHe QLin HMKong LZhou DLiang SZhu ZLiao DLiu WBentley CMDan JWang BYang NXu SGong JWei HSun HQin ZHEI Health Review Committee

展开

摘要:

Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of the logarithm of daily counts of mortality due to all natural causes and cause-specific mortality on the daily mean concentrations of the four pollutants while controlling for weather, temporal factors, and other important covariates with generalized additive models (GAMs). We derived pollutant effect estimations for 0-day, 1-day, 2-day, 3-day, and 4-day lagged exposure levels, and the averages of 0-day and 1-day lags (lag 0-1 day) and of 0-day, 1-day, 2-day, and 3-day lags (lag 0-3 days) before the event of death. In addition, we used individual-level data (e.g., age and sex) to classify subgroups in stratified analyses. Furthermore, we explored the nonlinear shapes ("thresholds") of the exposure-response relations. To achieve the second aim, we tested the hypothesis that extremely high temperature modifies the associations between air pollution and daily mortality. We developed three corresponding weather indicators: "extremely hot," "extremely cold," and "normal temperatures." The estimates were obtained from the models for the main effects and for the pollutant-temperature interaction for each pollutant and each cause of mortality. To achieve the third aim, we conducted an additional analysis. We examined the concordance rates and kappa statistics between the ICD-9-coded mortality data and the ICD-10-coded mortality data for the year 2002. We also compared the magnitudes of the estimated effects resulting from the use of the two types of ICD-coded mortality data. In general, the largest pollutant effects were observed at lag 0-1 day. Therefore, for this report, we focused on the results obtained from the lag 0-1 models. We observed consistent associations between PM10 and mortality: every 10-microg/m3 increase in PM10 daily concentration at lag 0-1 day produced a statistically significant association with an increase in mortality due to all natural causes (0.43%; 95% confidence interval [CI], 0.24 to 0.62), CVD (0.57%; 95% CI, 0.31 to 0.84), stroke (0.57%; 95% CI, 0.25 to 0.88), CARD (0.49%; 95% CI, 0.04 to 0.94), RD (0.87%; 95% CI, 0.34 to 1.41), CP (0.52%; 95% CI, 0.27 to 0.77), and non-CP (0.30%; 95% CI, 0.05 to 0.54). In general, these effects were stronger in females than in males and were also stronger among the elderly (> or = 65 years) than among the young. The results of sensitivity testing over the range of exposures from 24.8 to 477.8 microg/m3 also suggest the appropriateness of assuming a linear relation between daily mortality and PM10. Among the gaseous pollutants, we also observed statistically significant associations of mortality with NO, and SO2, and that the estimated effects of these two pollutants were stronger than the PM10 effects. The patterns of NO2 and SO2 associations were similar to those of PM10 in terms of sex, age, and linearity. O3 was not associated with mortality. In the analysis of the effect modification of extremely high temperature on the association between air pollution and daily mortality, only the interaction of PM10 with temperature was statistically significant. Specifically, the interaction terms were statistically significant for mortality due to all natural (P = 0.014), CVD (P = 0.007), and CP (P = 0.014) causes. Across the three temperature groups, the strongest PM10 effects occurred mainly on days with extremely high temperatures for mortality due to all natural (2.20%; 95% CI, 0.74 to 3.68), CVD (3.28%; 95% CI, 1.24 to 5.37), and CP (3.02%; 95% CI, 1.03 to 5.04) causes. The weakest effects occurred at normal temperature days, with the effects on days with low temperatures in the middle. To assess the uncertainty of the effect estimates caused by the change from ICD-9-coded mortality data to ICD-10-coded mortality data, we compared the two sets of data and found high concordance rates (> 99.3%) and kappa statistics close to 1.0 (> 0.98). All effect estimates showed very little change. All statistically significant levels of the estimated effects remained unchanged. In conclusion, the findings for the aims from the current study are consistent with those in most previous studies of air pollution and mortality. The small differences between mortality effects for deaths coded using ICD-9 and ICD-10 show that the change in coding had a minimal impact on our study. Few published papers have reported synergistic effects of extremely high temperatures and air pollution on mortality, and further studies are needed. Establishing causal links between heat, PM10, and mortality will require further toxicologic and cohort studies.

收起

展开

被引量:

25

年份:

2010

- (发表期刊)

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(17268)

参考文献(0)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读