Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont.
摘要:
Numerous insect species harbor mutualistic endosymbionts that play a role in nutrient cycling or confer other fitness benefits to their hosts. Insect hosts face the problem of having to maintain such mutualistic bacteria while staging an immune response towards pathogens upon infection. In addition, hosts may regulate the number of endosymbionts present in their tissues via the innate immune system. Camponotus floridanus ants harbor the obligate endosymbiont Blochmannia floridanus in specialized midgut cells and ovaries. We identified genes transcriptionally induced in response to septic injury by suppression subtractive hybridization (SSH). Among these were genes involved in pathogen recognition (e.g. GNBP), signal transduction (e.g. MAPK-kinase), antimicrobial activity (e.g. defensin and hymenoptaecin), or general stress response (e.g. heat shock protein). A quantitative analysis of immune-gene expression revealed different expression kinetics of individual factors and also characteristic expression profiles after injection of gram-negative and gram-positive bacteria. Likewise, B. floridanus injected into the hemocoel elicited a comparable immune response of its host C. floridanus. Thus, the host immune system may contribute to controlling the endosymbiont population.
收起
展开
DOI:
10.1016/j.ibmb.2011.03.002
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(87)
参考文献(0)
引证文献(14)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无