Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment.


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(97)
参考文献(29)
引证文献(19)
-
Ranzi A ,Fano V ,Erspamer L ,Lauriola P ,Perucci CA ,Forastiere F ... - 《Environmental Health》
被引量: 19 发表:1970年 -
Evidence is increasing that long-term exposure to ambient air pollution is associated with deaths from cardiopulmonary diseases. In a 2002 pilot study, we reported clear indications that traffic-related air pollution, especially at the local scale, was related to cardiopulmonary mortality in a randomly selected subcohort of 5000 older adults participating in the ongoing Netherlands Cohort Study (NLCS) on diet and cancer. In the current study, referred to as NLCS-AIR, our objective was to obtain more precise estimates of the effects of traffic-related air pollution by analyzing associations with cause-specific mortality, as well as lung cancer incidence, in the full cohort of approximately 120,000 subjects. Cohort members were 55 to 69 years of age at enrollment in 1986. Follow-up was from 1987 through 1996 for mortality (17,674 deaths) and from late 1986 through 1997 for lung cancer incidence (2234 cases). Information about potential confounding variables and effect modifiers was available from the questionnaire that subjects completed at enrollment and from publicly available data (including neighborhood-scale information such as income distributions). The NLCS was designed for a case-cohort approach, which makes use of all the cases in the full cohort, while data for the random subcohort are used to estimate person-time experience in the study. Full information on confounders was available for the subjects in the random subcohort and for the emerging cases of mortality and lung cancer incidence during the follow-up period, and in NLCS-AIR we used the case-cohort approach to examine the relation between exposure to air pollution and cause-specific mortality and lung cancer. We also specified a standard Cox proportional hazards model within the full cohort, for which information on potential confounding variables was much more limited. Exposure to air pollution was estimated for the subjects' home addresses at baseline in 1986. Concentrations were estimated for black smoke (a simple marker for soot) and nitrogen dioxide (NO2) as indicators of traffic-related air pollution, as well as nitric oxide (NO), sulfur dioxide (SO2), and particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5), as estimated from measurements of particulate matter with aerodynamic diameter < or = 10 microm (PM10). Overall long-term exposure concentrations were considered to be a function of air pollution contributions at regional, urban, and local scales. We used interpolation from data obtained routinely at regional stations of the National Air Quality Monitoring Network (NAQMN) to estimate the regional component of exposure at the home address. Average pollutant concentrations were estimated from NAQMN measurements for the period 1976 through 1996. Land-use regression methods were used to estimate the urban exposure component. For the local exposure component, geographic information systems (GISs) were used to generate indicators of traffic exposure that included traffic intensity on and distance to nearby roads. A major effort was made to collect traffic intensity data from individual municipalities. The exposure variables were refined considerably from those used in the pilot study, but we also analyzed the data for the full cohort in the current study using the exposure indicators of the pilot study. We analyzed the data in models with the estimated overall pollutant concentration as a single variable and with the background concentration (the sum of regional and urban components) and the local exposure estimate from traffic indicators as separate variables. In the full-cohort analyses adjusted for the limited set of confounders, estimated overall exposure concentrations of black smoke, NO2, NO, and PM2.5 were associated with mortality. For a 10-microg/m3 increase in the black smoke concentration, the relative risk (RR) (95% confidence interval [CI]) was 1.05 (1.00-1.11) for natural-cause (nonaccidental) mortality, 1.04 (0.95-1.13) for cardiovascular mortality, 1.22 (0.99-1.50) for respiratory mortality, 1.03 (0.88-1.20) for lung cancer mortality, and 1.04 (0.97-1.12) for noncardiopulmonary, non-lung cancer mortality. Results were similar for NO2, NO, and PM2.5. For a 10-microg/m3 increase in PM2.5 concentration, the RR for natural-cause mortality was 1.06 (95% CI, 0.97-1.16), the same as in the results of the American Cancer Society Study reported by Pope and colleagues in 2002. The highest relative risks were found for respiratory mortality, though confidence intervals were wider for this less-frequent cause of death. No associations with mortality were found for SO2. Some of the associations between the traffic indicator variables used to assess traffic intensity near the home and mortality reached statistical significance in the full cohort. For an increase in traffic intensity of 10,000 motor vehicles in 24 hours (motor vehicles/day) on the road nearest a subject's residence, the RR was 1.03 (95% CI, 1.00-1.08) for natural-cause mortality, 1.05 (0.99-1.12) for cardiovascular mortality, 1.10 (0.95-1.26) for respiratory mortality, 1.07 (0.96-1.19) for lung cancer mortality, and 1.00 (0.94-1.06) for noncardiopulmonary, non-lung cancer mortality. Results were similar for traffic intensity in a 100-m buffer around the subject's residence and living near a major road (a road with more than 10,000 motor vehicles/day). Distance in meters to the nearest major road and traffic intensity on the nearest major road were not associated with any of the mortality outcomes. We did not find an association between cardiopulmonary mortality and living near a major road as defined using the methods of the pilot study. In the case-cohort analyses adjusted for all potential confounders, we found no associations between background air pollution and mortality. The associations between traffic intensity and mortality were weaker than in the full cohort, and confidence intervals were wider, consistent with the smaller number of subjects. The lower relative risks of mortality associated with traffic variables in the case-cohort study population could be related to the particular subcohort that was randomly selected from the full cohort, as the risks estimated with the actual subcohort were well below the average estimates obtained for 100 new case-cohort analyses with 100 alternative subcohorts of 5000 subjects each that we randomly selected from the full cohort. Differences in adjusted relative risks between the full-cohort and the case-cohort analyses could be explained by random error introduced by sampling from the full cohort and by a selection effect resulting from the relatively large number of missing data for variables in the extensive confounder model used in the case-cohort analyses. More complete control for confounding probably did not contribute much to the lower relative risks in the case-cohort analyses, especially for the traffic variables, as results were similar when the limited confounder model for the full cohort was used in analyses of the subjects in the case-cohort study population. In additional analyses using black smoke concentrations as the exposure variables, we found that the association between overall black smoke and cardiopulmonary mortality was somewhat stronger for case-cohort subjects who did not change residence during follow-up, and in the full cohort, there was a tendency for relative risks to be higher for subjects living in the three major cities included in the study. Adjustment for estimated exposure to traffic noise did not affect the associations of background black smoke and traffic intensity with cardiovascular mortality. There was some indication of an association between traffic noise and cardiovascular mortality only for the 1.6% of the subjects in the full cohort who were exposed to traffic noise in the highest category of > 65 A-weighted decibels (dB(A); decibels with the sound pressure scale adjusted to conform with the frequency response of the human ear). Examination of sex, smoking status, educational level, and vegetable and fruit intake as possible effect modifiers showed that for overall black smoke concentrations, associations with mortality tended to be stronger in case-cohort subjects with lower levels of education and those with low fruit intake, but differences between strata were not statistically significant. For lung cancer incidence, we found essentially no relation to exposure to NO2, black smoke, PM2.5, SO2, or several traffic indicators. Associations of overall air pollution concentrations and traffic indicator variables with lung cancer incidence were, however, found in subjects who had never smoked, with an RR of 1.47 (95% CI, 1.01-2.16) for a 10-microg/m3 increase in overall black smoke concentration. In the current study, the mortality risks associated with both background air pollution and traffic exposure variables were much smaller than the estimate previously reported in the pilot study for risk of cardiopulmonary mortality associated with living near a major road (RR, 1.95; 95% CI, 1.09-3.51). The differences are most likely due to the extension of the follow-up period in the current study and to random error in the pilot study related to sampling from the full cohort. Though relative risks were generally small in the current study, long-term average concentrations of black smoke, NO2, and PM2.5 were related to mortality, and associations of black smoke and NO2 exposure with natural-cause and respiratory mortality were statistically significant. Traffic intensity near the home was also related to natural-cause mortality. The highest relative risks associated with background air pollution and traffic variables were for respiratory mortality, though the number of deaths was smaller than for the other mortality categories. (ABSTRACT TRUNCATED)
Brunekreef B ,Beelen R ,Hoek G ,Schouten L ,Bausch-Goldbohm S ,Fischer P ,Armstrong B ,Hughes E ,Jerrett M ,van den Brandt P ... - 《-》
被引量: 119 发表:2009年 -
Golini MN ,Ancona C ,Badaloni C ,Bolignano A ,Bucci S ,Sozzi R ,Davoli M ,Forastiere F ... - 《Epidemiologia & Prevenzione》
被引量: 6 发表:2014年 -
Epidemiological cohort studies have consistently found associations between long-term exposure to outdoor air pollution and a range of morbidity and mortality endpoints. Recent evaluations by the World Health Organization and the Global Burden of Disease study have suggested that these associations may be nonlinear and may persist at very low concentrations. Studies conducted in North America in particular have suggested that associations with mortality persisted at concentrations of particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) well below current air quality standards and guidelines. The uncertainty about the shape of the concentration-response function at the low end of the concentration distribution, related to the scarcity of observations in the lowest range, was the basis of the current project. Previous studies have focused on PM2.5, but increasingly associations with nitrogen dioxide (NO2) are being reported, particularly in studies that accounted for the fine spatial scale variation of NO2. Very few studies have evaluated the effects of long-term exposure to low concentrations of ozone (O3). Health effects of black carbon (BC), representing primary combustion particles, have not been studied in most large cohort studies of PM2.5. Cohort studies assessing health effects of particle composition, including elements from nontailpipe traffic emissions (iron, copper, and zinc) and secondary aerosol (sulfur) have been few in number and reported inconsistent results. The overall objective of our study was to investigate the shape of the relationship between long-term exposure to four pollutants (PM2.5, NO2, BC, and O3) and four broad health effect categories using a number of different methods to characterize the concentration-response function (i.e., linear, nonlinear, or threshold). The four health effect categories were (1) natural- and cause-specific mortality including cardiovascular and nonmalignant as well as malignant respiratory and diabetes mortality; and morbidity measured as (2) coronary and cerebrovascular events; (3) lung cancer incidence; and (4) asthma and chronic obstructive pulmonary disease (COPD) incidence. We additionally assessed health effects of PM2.5 composition, specifically the copper, iron, zinc, and sulfur content of PM2,5. We focused on analyses of health effects of air pollutants at low concentrations, defined as less than current European Union (EU) Limit Values, U.S. Environmental Protection Agency (U.S. EPA), National Ambient Air Quality Standards (NAAQS), and/or World Health Organization (WHO) Air Quality Guideline values for PM2.5, NO2, and O3. We address the health effects at low air pollution levels by performing new analyses within selected cohorts of the ESCAPE study (European Study of Cohorts for Air Pollution Effects; Beelen et al. 2014a) and within seven very large European administrative cohorts. By combining well-characterized ESCAPE cohorts and large administrative cohorts in one study the strengths and weaknesses of each approach can be addressed. The large administrative cohorts are more representative of national or citywide populations, have higher statistical power, and can efficiently control for area-level confounders, but have fewer possibilities to control for individual-level confounders. The ESCAPE cohorts have detailed information on individual confounders, as well as country-specific information on area-level confounding. The data from the seven included ESCAPE cohorts and one additional non-ESCAPE cohort have been pooled and analyzed centrally. More than 300,000 adults were included in the pooled cohort from existing cohorts in Sweden, Denmark, Germany, the Netherlands, Austria, France, and Italy. Data from the administrative cohorts have been analyzed locally, without transfer to a central database. Privacy regulations prevented transfer of data from administrative cohorts to a central database. More than 28 million adults were included from national administrative cohorts in Belgium, Denmark, England, the Netherlands, Norway, and Switzerland as well as an administrative cohort in Rome, Italy. We developed central exposure assessment using Europewide hybrid land use regression (LUR) models, which incorporated European routine monitoring data for PM2.5, NO2, and O3, and ESCAPE monitoring data for BC and PM2.5 composition, land use, and traffic data supplemented with satellite observations and chemical transport model estimates. For all pollutants, we assessed exposure at a fine spatial scale, 100 × 100 m grids. These models have been applied to individual addresses of all cohorts including the administrative cohorts. In sensitivity analyses, we applied the PM2.5 models developed within the companion HEI-funded Canadian MAPLE study (Brauer et al. 2019) and O3 exposures on a larger spatial scale for comparison with previous studies. Identification of outcomes included linkage with mortality, cancer incidence, hospital discharge registries, and physician-based adjudication of cases. We analyzed natural-cause, cardiovascular, ischemic heart disease, stroke, diabetes, cardiometabolic, respiratory, and COPD mortality. We also analyzed lung cancer incidence, incidence of coronary and cerebrovascular events, and incidence of asthma and COPD (pooled cohort only). We applied the Cox proportional hazard model with increasing control for individual- and area-level covariates to analyze the associations between air pollution and mortality and/or morbidity for both the pooled cohort and the individual administrative cohorts. Age was used as the timescale because of evidence that this results in better adjustment for potential confounding by age. Censoring occurred at the time of the event of interest, death from other causes, emigration, loss to follow-up for other reasons, or at the end of follow-up, whichever came first. A priori we specified three confounder models, following the modeling methods of the ESCAPE study. Model 1 included only age (time axis), sex (as strata), and calendar year of enrollment. Model 2 added individual-level variables that were consistently available in the cohorts contributing to the pooled cohort or all variables available in the administrative cohorts, respectively. Model 3 further added area-level socioeconomic status (SES) variables. A priori model 3 was selected as the main model. All analyses in the pooled cohort were stratified by subcohort. All analyses in the administrative cohorts accounted for clustering of the data in neighborhoods by adjusting the variance of the effect estimates. The main exposure variable we analyzed was derived from the Europewide hybrid models based on 2010 monitoring data. Sensitivity analyses were conducted using earlier time periods, time-varying exposure analyses, local exposure models, and the PM2.5 models from the Canadian MAPLE project. We first specified linear single-pollutant models. Two-pollutant models were specified for all combinations of the four main pollutants. Two-pollutant models for particle composition were analyzed with PM2.5 and NO2 as the second pollutant. We then investigated the shape of the concentration-response function using natural splines with two, three, and four degrees of freedom; penalized splines with the degrees of freedom determined by the algorithm and shape-constrained health impact functions (SCHIF) using confounder model 3. Additionally, we specified linear models in subsets of the concentration range, defined by removing concentrations above a certain value from the analysis, such as for PM2.5 25 μg/m3 (EU limit value), 20, 15, 12 μg/m3 (U.S. EPA National Ambient Air Quality Standard), and 10 μg/m3 (WHO Air Quality Guideline value). Finally, threshold models were evaluated to investigate whether the associations persisted below specific concentration values. For PM2.5, we evaluated 10, 7.5, and 5 μg/m3 as potential thresholds. Performance of threshold models versus the corresponding no-threshold linear model were evaluated using the Akaike information criterion (AIC). In the pooled cohort, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values (25 μg/m3 and 40 μg/m3, respectively). More than 50,000 had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 μg/m3). More than 25,000 subjects had a residential PM2.5 exposure below the WHO guideline (10 μg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and diabetes mortality. In our main model, the hazard ratios (HRs) (95% [confidence interval] CI) were 1.13 (CI = 1.11, 1.16) for an increase of 5 μg/m3 PM2.5, 1.09 (CI = 1.07, 1.10) for an increase of 10 μg/m3 NO2, and 1.08 (CI = 1.06, 1.10) for an increase of 0.5 × 10-5/m BC for natural-cause mortality. The highest HRs were found for diabetes mortality. Associations with O3 were negative, both in the fine spatial scale of the main ELAPSE model and in large spatial scale exposure models. For PM2.5, NO2, and BC, we generally observed a supralinear association with steeper slopes at low exposures and no evidence of a concentration below which no association was found. Subset analyses further confirmed that these associations remained at low levels: below 10 μg/m3 for PM2.5 and 20 μg/m3 for NO2. HRs were similar to the full cohort HRs for subjects with exposures below the EU limit values for PM2.5 and NO2, the U.S. NAAQS values for PM2.5, and the WHO guidelines for PM2.5 and NO2. The mortality associations were robust to alternative specifications of exposure, including different time periods, PM2.5 from the MAPLE project, and estimates from the local ESCAPE model. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. HRs in two-pollutant models were attenuated but remained elevated and statistically significant for PM2.5 and NO2. In two-pollutant models of PM2.5 and NO2 HRs for natural-cause mortality were 1.08 (CI = 1.05, 1.11) for PM2.5 and 1.05 (CI = 1.03, 1.07) for NO2. Associations with O3 were attenuated but remained negative in two-pollutant models with NO2, BC, and PM2.5. We found significant positive associations between PM2.5, NO2, and BC and incidence of stroke and asthma and COPD hospital admissions. Furthermore, NO2 was significantly related to acute coronary heart disease and PM2.5 was significantly related to lung cancer incidence. We generally observed linear to supralinear associations with no evidence of a threshold, with the exception of the association between NO2 and acute coronary heart disease, which was sublinear. Subset analyses documented that associations remained even with PM2.5 below 20 μg/m3 and possibly 12 μg/m3. Associations remained even when NO2 was below 30 μg/m3 and in some cases 20 μg/m3. In two-pollutant models, NO2 was most consistently associated with acute coronary heart disease, stroke, asthma, and COPD hospital admissions. PM2.5 was not associated with these outcomes in two-pollutant models with NO2. PM2.5 was the only pollutant that was associated with lung cancer incidence in two-pollutant models. Associations with O3 were negative though generally not statistically significant. In the administrative cohorts, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values. More than 3.9 million subjects had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 μg/m3) and more than 1.9 million had residential PM2.5 exposures below the WHO guideline (10 μg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and lung cancer mortality, with moderate to high heterogeneity between cohorts. We found positive but statistically nonsignificant associations with diabetes mortality. In our main model meta-analysis, the HRs (95% CI) for natural-cause mortality were 1.05 (CI = 1.02, 1.09) for an increase of 5 μg/m3 PM2.5, 1.04 (CI = 1.02, 1.07) for an increase of 10 μg/m3 NO2, and 1.04 (CI = 1.02, 1.06) for an increase of 0.5 × 10-5/m BC, and 0.95 (CI = 0.93, 0.98) for an increase of 10 μg/m3 O3. The shape of the concentration-response functions differed between cohorts, though the associations were generally linear to supralinear, with no indication of a level below which no associations were found. Subset analyses documented that these associations remained at low levels: below 10 μg/m3 for PM2.5 and 20 μg/m3 for NO2. BC and NO2 remained significantly associated with mortality in two-pollutant models with PM2.5 and O3. The PM2.5 HR attenuated to unity in a two-pollutant model with NO2. The negative O3 association was attenuated to unity and became nonsignificant. The mortality associations were robust to alternative specifications of exposure, including time-varying exposure analyses. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. Effect estimates in the youngest participants (<65 years at baseline) were much larger than in the elderly (>65 years at baseline). Effect estimates obtained with the ELAPSE PM2.5 model did not differ from the MAPLE PM2.5 model on average, but in individual cohorts, substantial differences were found. Long-term exposure to PM2.5, NO2, and BC was positively associated with natural-cause and cause-specific mortality in the pooled cohort and the administrative cohorts. Associations were found well below current limit values and guidelines for PM2.5 and NO2. Associations tended to be supralinear, with steeper slopes at low exposures with no indication of a threshold. Two-pollutant models documented the importance of characterizing the ambient mixture with both NO2 and PM2.5. We mostly found negative associations with O3. In two-pollutant models with NO2, the negative associations with O3 were attenuated to essentially unity in the mortality analysis of the administrative cohorts and the incidence analyses in the pooled cohort. In the mortality analysis of the pooled cohort, significant negative associations with O3 remained in two-pollutant models. Long-term exposure to PM2.5, NO2, and BC was also positively associated with morbidity outcomes in the pooled cohort. For stroke, asthma, and COPD, positive associations were found for PM2.5, NO2, and BC. For acute coronary heart disease, an increased HR was observed for NO2. For lung cancer, an increased HR was found only for PM2.5. Associations mostly showed steeper slopes at low exposures with no indication of a threshold.
Brunekreef B ,Strak M ,Chen J ,Andersen ZJ ,Atkinson R ,Bauwelinck M ,Bellander T ,Boutron MC ,Brandt J ,Carey I ,Cesaroni G ,Forastiere F ,Fecht D ,Gulliver J ,Hertel O ,Hoffmann B ,de Hoogh K ,Houthuijs D ,Hvidtfeldt U ,Janssen N ,Jorgensen J ,Katsouyanni K ,Ketzel M ,Klompmaker J ,Hjertager Krog N ,Liu S ,Ljungman P ,Mehta A ,Nagel G ,Oftedal B ,Pershagen G ,Peters A ,Raaschou-Nielsen O ,Renzi M ,Rodopoulou S ,Samoli E ,Schwarze P ,Sigsgaard T ,Stafoggia M ,Vienneau D ,Weinmayr G ,Wolf K ,Hoek G ... - 《-》
被引量: 62 发表:2021年 -
[State of health of populations residing in geothermal areas of Tuscany].
Minichilli F ,Nuvolone D ,Bustaffa E ,Cipriani F ,Vigotti MA ,Bianchi F ... - 《Epidemiologia & Prevenzione》
被引量: 8 发表:2012年
加载更多
加载更多
加载更多