Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?

来自 PUBMED

作者:

Rascio NNavari-Izzo F

展开

摘要:

The term "hyperaccumulator" describes a number of plants that belong to distantly related families, but share the ability to grow on metalliferous soils and to accumulate extraordinarily high amounts of heavy metals in the aerial organs, far in excess of the levels found in the majority of species, without suffering phytotoxic effects. Three basic hallmarks distinguish hyperaccumulators from related non-hyperaccumulating taxa: a strongly enhanced rate of heavy metal uptake, a faster root-to-shoot translocation and a greater ability to detoxify and sequester heavy metals in leaves. An interesting breakthrough that has emerged from comparative physiological and molecular analyses of hyperaccumulators and related non-hyperaccumulators is that most key steps of hyperaccumulation rely on different regulation and expression of genes found in both kinds of plants. In particular, a determinant role in driving the uptake, translocation to leaves and, finally, sequestration in vacuoles or cell walls of great amounts of heavy metals, is played in hyperaccumulators by constitutive overexpression of genes encoding transmembrane transporters, such as members of ZIP, HMA, MATE, YSL and MTP families. Among the hypotheses proposed to explain the function of hyperaccumulation, most evidence has supported the "elemental defence" hypothesis, which states that plants hyperaccumulate heavy metals as a defence mechanism against natural enemies, such as herbivores. According to the more recent hypothesis of "joint effects", heavy metals can operate in concert with organic defensive compounds leading to enhanced plant defence overall. Heavy metal contaminated soils pose an increasing problem to human and animal health. Using plants that hyperaccumulate specific metals in cleanup efforts appeared over the last 20 years. Metal accumulating species can be used for phytoremediation (removal of contaminant from soils) or phytomining (growing plants to harvest the metals). In addition, as many of the metals that can be hyperaccumulated are also essential nutrients, food fortification and phytoremediation might be considered two sides of the same coin. An overview of literature discussing the phytoremediation capacity of hyperaccumulators to clean up soils contaminated with heavy metals and the possibility of using these plants in phytomining is presented.

收起

展开

DOI:

10.1016/j.plantsci.2010.08.016

被引量:

252

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(285)

参考文献(0)

引证文献(252)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读