Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: A drill-hole defect model.

来自 PUBMED

作者:

He YXZhang GPan XHLiu ZZheng LZChan CWLee KMCao YPLi GWei LHung LKLeung KSQin L

展开

摘要:

To establish a drill-hole defect model in osteoporotic mouse femur by comparing temporal cortical bone healing pattern between OVX-induced osteoporotic bone and sham-operated bone. 3-month-old female C57BL/6 mice were randomly divided into an ovariectomy group (OVX) and a sham-operated group (Sham). At 6 weeks post-surgery, 7 mice from each group were sacrificed to examine the distal femur and femoral shaft by both micro-CT and mechanical testing for confirming established osteoporosis induced by OVX. In the remaining mice, a cortical bone defect 0.8mm in diameter was created on the mid-diaphysis of the right femur. The local repair process at days 0, 3, 7, 10, 14 and 21 after creation of the drill-hole was in vivo monitored by high-resolution micro-CT scanning. At each time point, each animal was scanned four times and was removed from the scanner between scans to determine reproducibility. Mice were sacrificed at each time point (n=12 at days 0, 3, 7, 10 and 14; n=20 at day 21). Before sacrifice, sera were collected to examine expression of bone formation marker P1NP (procollagen type I N-terminal propeptide) and bone resorption marker CTX (C-terminal telopeptide of type I collagen). After sacrifice, callus samples were collected and subjected to the following analyses: micro-CT-based angiography; histological examination; immunohistochemical staining to determine estrogen receptor expression; quantitative real-time PCR analysis of collagen type I, collagen type II, collagen type X, osteocalcin, tartrate-resistant acid phosphatase, estrogen receptor alpha (ER alpha) and estrogen receptor beta (ER beta) gene expression; and three-point mechanical testing. At 6 weeks post-surgery, OVX mice had significantly lower bone mass, impaired bone micro architecture and compromised mechanical properties compared to the Sham mice. In vivo micro-CT analysis revealed that the bone volume fraction in the defect region was significantly lower in the OVX group from day 10 to day 21 post-injury as compared to the Sham group, and was significantly lower in the intra-medulla region in the OVX group from day 7 to day 14 as compared to the Sham group, consistent with the histological data. Analysis of bone biochemical markers indicated that circulating P1NP levels normalized by baseline in the OVX mice were significantly lower than in the Sham mice from day 7 to day 10, and that temporal expression of circulating CTX levels normalized by baseline was also lower in the OVX mice as compared to the Sham mice. These results were consistent with quantitative real-time PCR analysis. ER alpha mRNA expression was significantly lower in the OVX mice, whereas ER beta mRNA expression was significantly higher in the OVX mice as compared to the Sham mice at all time points examined, consistent with immunohistochemical staining. The restoration of femoral mechanical property, determined based on ultimate load and energy-to-failure, was significantly lower in the OVX mice than in the Sham mice. In addition, in vivo micro-CT scanning for quantifying new bone formation in the defect site was highly reproducible in this model. The bone healing of the drill-hole defect was impaired in mice with OVX-induced osteoporosis. The present study provides a model to investigate the functional role of specific gene in osteoporotic bone healing and may facilitate development of novel therapeutic strategies for promoting osteoporotic bone healing.

收起

展开

DOI:

10.1016/j.bone.2011.03.720

被引量:

81

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(917)

参考文献(0)

引证文献(81)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读