Development of an orthogonal method for mometasone furoate impurity analysis using supercritical fluid chromatography.

来自 PUBMED

作者:

Wang ZZhang HLiu ODonovan B

展开

摘要:

While supercritical fluid chromatography (SFC) has received great popularity in chiral separation and purification, it has rarely been used for trace level pharmaceutical impurity analysis, partially due to the limitation of instrument sensitivity. In this study, a packed column SFC method has been developed for the quantitative analysis of mometasone furoate and its trace level impurities. The UV detection was optimized to improve the sensitivity by 2-4 fold. In combination with an increased sample concentration, this SFC method is capable of trace level (0.05% of the active) analysis of the impurities. The SFC method used a silica column and a mobile phase consisting of CO(2) and methanol. The new method provides an orthogonal selectivity complementary to the reversed phase HPLC (RP-HPLC) method. All of the impurities and the active were baseline separated within 12 min on SFC, which is less than one third of the RP-HPLC method run time. The method was also partially validated for linearity, accuracy, precision (repeatability), and limit of quantitation. This study demonstrated that the SFC method, with improved sensitivity, can be a valuable tool to provide orthogonal selectivity for trace level impurity separation. With further validation, the method may be suitable for release testing and stability testing for mometasone furoate drug substance.

收起

展开

DOI:

10.1016/j.chroma.2011.02.027

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(237)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读