Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma.
摘要:
This study evaluates the effect of dual PI3K and mTOR inhibition using NVP-BEZ235 in preclinical models of ovarian cancer as a potential novel therapeutic strategy. Inhibition of PI3K/Akt/mTOR signaling by NVP-BEZ235 was demonstrated by immunoblotting. The effect on cell proliferation was assessed in 18 ovarian cancer cell lines, including four pairs of syngeneic cisplatin-sensitive and cisplatin-resistant cell lines. The in vivo effects of NVP-BEZ235 on established tumor growth were evaluated using an immunocompetent, transgenic murine ovarian cancer model (LSL-K-ras(G12D/+)Pten(loxP/loxP)). NVP-BEZ235 decreased cell proliferation in all ovarian cancer cell lines assayed and sensitized cisplatin-resistant cells to the cytotoxic effects of cisplatin. Cell lines with PI3K-activating mutations or Pten deletions were significantly more sensitive to the effect of NVP-BEZ235 than cell lines without these mutations (P < 0.05). A statistically significant correlation was found between relative levels of p4E-BP1 and the IC(50) for NVP-BEZ235. In LSL-K-ras(G12D/+)Pten(loxP/loxP) mice with established intraperitoneal tumor disease, oral administration of NVP-BEZ235 decreased pAkt, p4E-BP1 and Ki67 in tumor tissue, and resulted in significantly longer survival compared to control animals (P < 0.05). NVP-BEZ235 also induced cell cycle arrest, caspase 3 activity, and reduced cell migration. Targeting PI3K and mTOR simultaneously using NVP-BEZ235 effectively inhibits ovarian cancer cell growth even in the presence of platinum resistance and prolongs survival of mice with intra-abdominal ovarian tumor disease. We propose that dual PI3K and mTOR inhibition using NVP-BEZ235 may be an effective novel therapeutic approach in patients with ovarian cancer.
收起
展开
DOI:
10.1158/1078-0432.CCR-10-2289
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(441)
参考文献(49)
引证文献(57)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无