Exposure to phthalates in 5-6 years old primary school starters in Germany--a human biomonitoring study and a cumulative risk assessment.
We determined the internal exposure of 111 German primary school starters by analyzing urinary metabolites of six phthalates: butyl benzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di (2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP) and di-iso-decylphthalate (DiDP). From the urinary metabolite levels, we calculated daily intakes and related these values to Tolerable Daily Intake (TDI) values. By introducing the concept of a relative cumulative Tolerable Daily Intake (TDI(cum)) value, we tried to account for the cumulative exposure to several of the above-mentioned phthalates. The TDI(cum) was derived as follows: the daily intake (DI) calculated from the metabolite level was divided by the TDI for each phthalate; this ratio was multiplied by 100% indicating the TDI percentage for which the DI accounted. Finally the % TDIs of the different phthalates were totalled to get the TDI(cum). A TDI(cum) above 100% is a potential cause for concern. We confirmed the ubiquitous exposure of the children to all phthalates investigated. Exposures were within range of levels previously reported for GerES, albeit slightly lower. Regarding daily intakes, two children exceeded the TDI for DnBP, whereas one child closely approached the TDI for DEHP. 24% of the children exceeded the TDI(cum) for the three most critical phthalates: DEHP, DnBP and DiBP. Furthermore, 54% of the children had total exposures that used up more than 50% the TDI(cum). Therefore, the overall exposure to a number of phthalates, and the knowledge that these phthalates (and other anti-androgens) act in a dose-additive manner, urgently warrants a cumulative risk assessment approach.
Koch HM
,Wittassek M
,Brüning T
,Angerer J
,Heudorf U
... -
《-》
Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study.
The exposure of the general population to phthalates is of increasing public health concern. Variations in the internal exposure of the population are likely, because the amounts, distribution and application characters of the phthalate use change over time. Estimating the chronological sequences of the phthalate exposure, we performed a retrospective human biomonitoring study by investigating the metabolites of the five most prominent phthalates in urine. Therefore, 24h-urine samples from the German Environmental Specimen Bank (ESB) collected from 240 subjects (predominantly students, age range 19-29 years, 120 females, 120 males) in the years 2002, 2004, 2006 and 2008 (60 individuals each), were analysed for the concentrations of mono-n-butyl phthalate (MnBP) as metabolite of di-n-butyl phthalate (DnBP), mono-iso-butyl phthalate (MiBP) as metabolite of di-iso-butyl phthalate (DiBP), mono-benzyl phthalate (MBzP) as metabolite of butylbenzyl phthalate (BBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and mono-(2-carboxymethyl hexyl) phthalate (2cx-MMHxP) as metabolites of di(2-ethylhexyl) phthalate (DEHP), monohydroxylated (OH-MiNP), monooxidated (oxo-MiNP) and monocarboxylated (cx-MiNP) mono-iso-nonylphthalates as metabolites of di-iso-nonyl phthalates (DiNP). Based on the urinary metabolite excretion, together with results of a previous study, which covered the years 1988-2003, we investigated the chronological sequences of the phthalate exposure over two decades. In more than 98% of the urine samples metabolites of all five phthalates were detectable indicating a ubiquitous exposure of people living in Germany to all five phthalates throughout the period investigated. The medians in samples from the different years investigated are 65.4 (2002), 38.5 (2004), 29.3 (2006) and 19.6 μg/l (2008) for MnBP, 31.4 (2002), 25.4 (2004), 31.8 (2006) and 25.5 μg/l (2008) for MiBP, 7.8 (2002), 6.3 (2004), 3.6 (2006) and 3.8 μg/l (2008) for MBzP, 7.0 (2002), 5.6 (2004), 4.1 (2006) and 3.3 μg/l (2008) for MEHP, 19.6 (2002), 16.2 (2004), 13.2 (2006) and 9.6 μg/l (2008) for 5OH-MEHP, 13.9 (2002), 11.8 (2004), 8.3 (2006) and 6.4 μg/l (2008) for 5oxo-MEHP, 18.7 (2002), 16.5 (2004), 13.8 (2006) and 10.2 μg/l (2008) for 5cx-MEPP, 7.2 (2002), 6.5 (2004), 5.1 (2006) and 4.6 μg/l (2008) for 2cx-MMHxP, 3.3 (2002), 2.8 (2004), 3.5 (2006) and 3.6 μg/l (2008) for OH-MiNP, 2.1 (2002), 2.1 (2004), 2.2 (2006) and 2.3 μg/l (2008) for oxo-MiNP and 4.1 (2002), 3.2 (2004), 4.1 (2006) and 3.6 μg/l (2008) for cx-MiNP. The investigation of the time series 1988-2008 indicates a decrease of the internal exposure to DnBP by the factor of 7-8 and to DEHP and BzBP by the factor of 2-3. In contrast, an increase of the internal exposure by the factor of 4 was observed for DiNP over the study period. The exposure to DiBP was found to be stable. In summary, we found decreases of the internal human exposure for legally restricted phthalates whereas the exposure to their substitutes increased. Future investigations should verify these trends. This is of increasing importance since the European Commission decided to require ban or authorization from 1.1.2015 for DEHP, DnBP, DiBP and BzBP according to REACh Annex XIV.
Göen T
,Dobler L
,Koschorreck J
,Müller J
,Wiesmüller GA
,Drexler H
,Kolossa-Gehring M
... -
《-》
Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI).
Phthalates have long been used as plasticizers to soften plastic products and, thus, are ubiquitous in modern life. As part of the Bavarian Monitoring of Breast Milk (BAMBI), we aimed to characterize the exposure of infants to phthalates in Germany. Overall, 15 phthalates, including di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), di-isobutyl phthalate (DiBP), di-isononyl phthalate (DiNP), three primary metabolites of DEHP [mono-(2-ethylhexyl) phthalate (MEHP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP)], and two secondary metabolites of DEHP were analyzed in 78 breast milk samples. We found median concentrations of 3.9 ng/g for DEHP, 0.8 ng/g for DnBP, and 1.2 ng/g for DiBP, while other parent phthalates were found in only some or none of the samples at levels above the limit of quantitation. In infant formula (n=4) we observed mean values of 19.7 ng/g (DEHP), 3.8 ng/g (DnBP), and 3.6 ng/g (DiBP). For MEHP, MiBP, and MnBP, the median values in breast milk were 2.3 μg/l, 11.8 μg/l, and 2.1 μg/l, respectively. The secondary metabolites were not detected in any samples. Using median and 95th percentile values, we estimated an "average" and "high" daily intake for an exclusively breast-fed infant of 0.6 μg/kg body weight (b.w.) and 2.1 μg/kg b.w., respectively, for DEHP, 0.1 μg/kg b.w. and 0.5 μg/kg b.w. for DnBP, and 0.2 μg/kg b.w. and 0.7 μg/kg b.w. for DiBP. For DiNP, intake values were 3.2 μg/kg b.w. and 6.4 μg/kg b.w., respectively, if all values in milk were set half of the detection limit or the detection limit. The above-mentioned "average" and "high" intake values corresponded to only about 2% to 7%, respectively, of the recommended tolerable daily intake. Thus, it is not likely that an infant's exposure to phthalates from breast milk poses any significant health risk. Nevertheless, other sources of phthalates in this vulnerable phase have to be considered. Moreover, it should be noted that for infants nourished with formula, phthalate intake is of the same magnitude or slightly higher (DEHP) than for exclusively breast-fed infants.
Fromme H
,Gruber L
,Seckin E
,Raab U
,Zimmermann S
,Kiranoglu M
,Schlummer M
,Schwegler U
,Smolic S
,Völkel W
,HBMnet
... -
《-》