The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus.

来自 PUBMED

作者:

Miura KYamada NHanada SJung TKItoi E

展开

摘要:

A Ti-Nb-Sn alloy was developed as a new β-type titanium alloy which had a low Young's modulus and high strength. The Young's modulus of the Ti-Nb-Sn alloy was reduced to about 45 GPa by cold rolling, much closer to human cortical bone (10-30 GPa) than that of Ti-6Al-4V alloy (110 GPa) and other β-type titanium alloys developed for biomedical applications. The tensile strength of the Ti-Nb-Sn alloy was increased to a level greater than that of Ti-6Al-4V alloy by heat treatment after severe cold rolling. In this study the cytotoxicity of Ti-25Nb-11Sn alloy was evaluated in direct contact cell culture tests using metal disks and the bone tissue compatibility - examined using metal rods inserted into the medullary canal of rabbit femurs. The remarkable findings were that: (1) there were no significant differences in the relative growth ratio and relative absorbance ratio between cells grown with the Ti-Nb-Sn alloy, Ti-6Al-4V alloy and CP-Ti in direct contact cell culture tests; (2) there were no significant differences in the load at failure between the Ti-Nb-Sn alloy and Ti-6Al-4V alloy in pull-out metal rods tests; (3) there were no significant differences in new bone formation around metal rods between the Ti-Nb-Sn alloy and Ti-6Al-4V alloy in histological evaluations. The new Ti-Nb-Sn alloy with an elasticity closer to that of human bone is thus considered to be bioinert while also having a high degree of bone compatibility similar to that of Ti-6Al-4V alloy.

收起

展开

DOI:

10.1016/j.actbio.2011.02.008

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(621)

参考文献(0)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读