-
The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese Black and Holstein cattle in Japan.
In cattle, bovine leukocyte antigens (BoLAs) have been extensively used as markers for bovine diseases and immunological traits. In this study, we sequenced alleles of the BoLA class II loci, BoLA-DRB3 and BoLA-DQA1, from 650 Japanese cattle from six herds [three herds (507 animals) of Japanese Black cattle and three herds (143 animals) of Holstein cattle] using polymerase chain reaction-sequence-based typing (PCR-SBT) methods. We identified 26 previously reported distinct DRB3 alleles in the two populations: 22 in Japanese Black and 17 in Holstein. The number of DRB3 alleles detected in each herd ranged from 9 to 20. Next, we identified 15 previously reported distinct DQA1 alleles: 13 in Japanese Black and 10 in Holstein. The number of alleles in each herd ranged from 6 to 10. Thus, allelic divergence is significantly greater for DRB3 than for DQA1. A population tree on the basis of the frequencies of the DRB3 and DQA1 alleles showed that, although the genetic distance differed significantly between the two cattle breeds, it was closely related within the three herds of each breed. In addition, Wu-Kabat variability analysis indicated that the DRB3 gene was more polymorphic than the DQA1 gene in both breeds and in all herds, and that the majority of the hypervariable positions within both loci corresponded to pocket-forming residues. The DRB3 and DQA1 heterozygosity for both breeds within each herd were calculated based on the Hardy-Weinberg equilibrium. Only one Japanese Black herd showed a significant difference between the expected and observed heterozygosity at both loci. This is the first report presenting a detailed study of the allelic distribution of BoLA-DRB3 and -DQA1 genes in Japanese Black and Holstein cattle from different farms in Japan. These results may help to develop improved livestock breeding strategies in the future.
Miyasaka T
,Takeshima SN
,Matsumoto Y
,Kobayashi N
,Matsuhashi T
,Miyazaki Y
,Tanabe Y
,Ishibashi K
,Sentsui H
,Aida Y
... -
《-》
-
Distribution and origin of bovine major histocompatibility complex class II DQA1 genes in Japan.
We sequenced the major histocompatibility complex (MHC) class II DQA1 gene in 352 Japanese cattle (95 Japanese Black, 91 Holstein, 102 Japanese Shorthorn and 64 Jersey cattle) using a new sequence-based typing method. In total, 19 bovine MHC (BoLA)-DQA1 alleles, of which two were novel alleles, were detected. The Holstein, Jersey, Japanese Shorthorn and Japanese Black breeds had 13, 12, 10 and 15 alleles, respectively. The dendrogram that was constructed by the neighbor-joining method on the basis of the DQA1 gene allele frequencies of the four Japanese cattle breeds showed that the Holstein and Japanese Black breeds were closest to each other, with Jersey being farther from these two breeds than Japanese Shorthorn. In addition, Wu-Kabat analysis showed that the DQA1 alleles of the Holstein and Japanese Black were the most and least polymorphic, respectively. Phylogenetic analyses indicated that the DQA1 gene of Bovidae such as cattle, sheep, bison and goat were more similar to pig SLA-DQA genes than to human HLA-DQA1 and dog DLA-DQA genes. The cattle, goat, bison, sheep, human and pig DQA1 molecules had similar rates of amino acid sequence polymorphism, but the distribution of their polymorphic residues differed from that in the dog DQA1 protein. However, the Bovidae DQA1 molecule had more polymorphic residues than the human, pig and dog DQA molecules at two regions, namely positions 52-53 and 65-66. This indicates that the Bovidae DQA1 locus is more polymorphic than the DQA loci of other species.
Takeshima S
,Chen S
,Miki M
,Kado M
,Aida Y
... -
《-》
-
Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese Black and Holstein cattle in Japan.
Bovine leukocyte antigen (BoLA), the major histocompatibility complex of cattle, is one of the most polymorphic gene clusters. We genotyped a population of 109 Japanese Black and 39 Holstein cattle to analyze their BoLA class II haplotypes, BoLA-DRB3 locus, 5 BoLA-DQA loci, and 5 BoLA-DQB loci. We identified 26 previously reported DRB3 alleles, 22 previously reported and 3 new DQA alleles, and 24 previously reported and 6 new DQB alleles. A dendrogram was constructed based on the predicted amino acid sequences of the α1 or β1 domains encoded by BoLA-DQA or -DQB alleles, which revealed that DQA alleles were clustered into 5 loci, whereas DQB alleles could not be clearly assigned to specific DQB loci. The BoLA-DRB3-DQA-DQB haplotypes were sorted by sequential analytical processes, and 42 distinct haplotypes, including 11 previously published haplotypes and 31 novel haplotypes, were defined. Strong linkage disequilibrium was present in the BoLA genes. We also compared DRB3-DQA1 haplotype frequencies between 507 Japanese Black and 143 Holstein cattle. Thirty-nine DRB3-DQA1 haplotypes were identified, including 29 haplotypes from Japanese Black and 22 haplotypes from Holstein cattle. The majority of the haplotypes could be identified in both breeds, although several haplotypes were identified in only a single breed. This is the first report presenting a detailed study of the BoLA class II haplotype in Japanese Black and Holstein cattle in Japan.
Miyasaka T
,Takeshima SN
,Sentsui H
,Aida Y
... -
《-》
-
Genetic diversity and population genetic analysis of bovine MHC class II DRB3.2 locus in three Bos indicus cattle breeds of Southern India.
The present study was performed to evaluate the genetic polymorphism of BoLA-DRB3.2 locus in Malnad Gidda, Hallikar and Ongole South Indian Bos indicus cattle breeds, employing the PCR-RFLP technique. In Malnad Gidda population, 37 BoLA-DRB3.2 alleles were detected, including one novel allele DRB3*2503 (GenBank: HM031389) that was observed in the frequency of 1.87%. In Hallikar and Ongole populations, 29 and 21 BoLA-DRB3.2 alleles were identified, respectively. The frequencies of the most common BoLA-DRB3.2 alleles (with allele frequency > 5%), in Malnad Gidda population, were DRB3.2*15 (10.30%), DRB3*5702 (9.35%), DRB3.2*16 (8.41%), DRB3.2*23 (7.01%) and DRB3.2*09 (5.61%). In Hallikar population, the most common alleles were DRB3.2*11 (13.00%), DRB3.2*44 (11.60%), DRB3.2*31 (10.30%), DRB3.2*28 (5.48%) and DRB3.2*51 (5.48%). The most common alleles in Ongole population were DRB3.2*15 (22.50%), DRB3.2*06 (20.00%), DRB3.2*13 (13.30%), DRB3.2*12 (9.17%) and DRB3.2*23 (7.50%). A high degree of heterozygosity observed in Malnad Gidda (H(O) = 0.934, H(E) = 0.955), Hallikar (H(O) = 0.931, H(E) = 0.943) and Ongole (H(O) = 0.800, H(E) = 0.878) populations, along with F(IS) values close to F(IS) zero (Malnad Gidda: F(IS) = 0.0221, Hallikar: F(IS) = 0.0127 and Ongole: F(IS) = 0.0903), yielded nonsignificant P-values with respect to Hardy-Weinberg equilibrium probabilities revealing, no perceptible inbreeding, greater genetic diversity and characteristic population structure being preserved in the three studied cattle populations. The phylogenetic tree constructed based on the frequencies of BoLA-DRB3.2 alleles observed in 10 Bos indicus and Bos taurus cattle breeds revealed distinct clustering of specific Bos indicus cattle breeds, along with unique genetic differentiation observed among them. The results of this study demonstrated that the BoLA-DRB3.2 is a highly polymorphic locus, with significant breed-specific genetic diversities being present amongst the three studied cattle breeds. The population genetics and phylogenetic analysis have revealed pivotal information about the population structure and importance of the presently studied three Bos indicus cattle breeds as unique animal genetic resources, which have to be conserved for maintaining native cattle genetic diversity.
Das DN
,Sri Hari VG
,Hatkar DN
,Rengarajan K
,Saravanan R
,Suryanarayana VV
,Murthy LK
... -
《-》
-
Characterization of bovine MHC DRB3 diversity in Latin American Creole cattle breeds.
In cattle, bovine leukocyte antigens (BoLAs) have been extensively used as markers for diseases and immunological traits. However, none of the highly adapted Latin American Creole breeds have been characterized for BoLA gene polymorphism by high resolution typing methods. In this work, we sequenced exon 2 of the BoLA class II DRB3 gene from 179 cattle (113 Bolivian Yacumeño cattle and 66 Colombian Hartón del Valle cattle breeds) using a polymerase chain reaction sequence-based typing (PCR-SBT) method. We identified 36 previously reported alleles and three novel alleles. Thirty-five (32 reported and three new) and 24 alleles (22 reported and two new) were detected in Yacumeño and Hartón del Valle breeds, respectively. Interestingly, Latin American Creole cattle showed a high degree of gene diversity despite their small population sizes, and 10 alleles including three new alleles were found only in these two Creole breeds. We next compared the degree of genetic variability at the population and sequence levels and the genetic distance in the two breeds with those previously reported in five other breeds: Holstein, Japanese Shorthorn, Japanese Black, Jersey, and Hanwoo. Both Creole breeds presented gene diversity higher than 0.90, a nucleotide diversity higher than 0.07, and mean number of pairwise differences higher than 19, indicating that Creole cattle had similar genetic diversity at BoLA-DRB3 to the other breeds. A neutrality test showed that the high degree of genetic variability may be maintained by balancing selection. The FST index and the exact G test showed significant differences across all cattle populations (FST=0.0478; p<0.001). Results from the principal components analysis and the phylogenetic tree showed that Yacumeño and Hartón del Valle breeds were closely related to each other. Collectively, our results suggest that the high level of genetic diversity could be explained by the multiple origins of the Creole germplasm (European, African and Indicus), and this diversity might be maintained by balancing selection.
Giovambattista G
,Takeshima SN
,Ripoli MV
,Matsumoto Y
,Franco LA
,Saito H
,Onuma M
,Aida Y
... -
《-》