Supercritical fluid chromatography and steady-state recycling: phase appropriate technologies for the resolutions of pharmaceutical intermediates in the early drug development stage.

来自 PUBMED

作者:

Yan TQOrihuela CPreston JPXia F

展开

摘要:

The use of phase appropriate technologies is critical for efficiently moving drug candidates forward in the early stages of drug discovery and development. Phase appropriate purification technology develops the analytical method and subsequently scales up the method and turns the sample around quickly (Kennedy et al., J Chromatogr A 2004; 1046:55). In this article, separation results and conditions from supercritical fluid chromatography (SFC), high-performance liquid chromatography (HPLC), and steady-state recycling (SSR) for the resolutions of three pharmaceutical intermediates in the early stage of the drug development are discussed. The first study used SFC and SSR to separate an impurity for a Good Manufacturing Practice (GMP) campaign. The analytical method development and scale-up conditions are discussed. Productivity, solvent usage, and sample solubility under SFC and SSR conditions are also compared. The second study compared SFC to batch HPLC in separating a diastereomer. Due to higher separation efficiency, SFC was able to resolute multiple peaks. The third study involved the addition of dichloromethane as a co-solvent in SFC purification--improving sample selectivity and solubility. From the separation results of these purifications, SFC and SSR are clearly phase appropriate technologies in the early drug development stage.

收起

展开

DOI:

10.1002/chir.20861

被引量:

0

年份:

2010

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(207)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读