The effect of dexamethasone on clock gene mRNA levels in bovine neutrophils and lymphocytes.

来自 PUBMED

作者:

Nebzydoski SJPozzo SNemec LRankin MKGressley TF

展开

摘要:

Circadian rhythms are driven by oscillating expression of a family of transcription factors called clock genes. In rodents, clock genes drive circadian rhythms in white blood cell function, and glucocorticoids are believed to regulate these rhythms. Little is known about circadian rhythms of cattle white blood cells. The objectives of this study were: (1) to quantify mRNA levels of clock genes in neutrophils and lymphocytes over 24h in healthy steers; and (2) to quantify effects of dexamethasone on clock gene mRNA levels in bovine neutrophils and lymphocytes. We hypothesized that bovine neutrophils and lymphocytes would display 24h variations in clock gene mRNA levels and that those patterns would be disrupted by glucocorticoid treatment. Six Holstein steers were injected with 0 or 0.10mg/kg body weight dexamethasone according to a crossover design. Neutrophils and lymphocytes were collected from jugular blood at 0, 4, 8, 12, 16, 20, and 24h relative to treatment administration. Neutrophil and lymphocyte mRNA levels of the clock genes Clock, Bmal1, Per1, Per2, Cry1, Cry2, Rev-erbα, and CK1ɛ were quantified. For neutrophils, an interaction between treatment and time was found for Clock, Cry1, and CK1ɛ. Time affected Clock, Per1, Cry1, Rev-erbα, and CK1ɛ. For all of those genes except Per1, neutrophils from control steers displayed 24h changes of mRNA levels characteristic of circadian regulated cells. The dexamethasone treatment increased neutrophil mRNA levels of Per1, decreased Clock, Cry1, Cry2, and Rev-erbα, and tended to decrease Bmal1. These results suggest that circadian rhythms have the potential to impact bovine neutrophil function, and that glucocorticoid-induced disruption of neutrophil circadian rhythms may contribute to periparturient immunosuppression. For lymphocytes, an interaction between treatment and time was observed for Per1 and tended to occur for Per2 and Cry2. Although time affected Per1 and Rev-erbα, distinct 24h patterns of lymphocyte clock gene mRNA levels were not evident as they were in neutrophils. Treatment increased Per1 and decreased Cry2, but the magnitude of the treatment effect was small. In summary, 24h patterns in clock gene mRNA levels were observed in bovine neutrophils and to some degree in lymphocytes, and these patterns were disrupted by dexamethasone administration. Although further research is needed, individual variation in white blood cell circadian rhythms and glucocorticoid responsiveness may help to explain individual differences in periparturient disease susceptibility.

收起

展开

DOI:

10.1016/j.vetimm.2010.07.017

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1383)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读