Validation of clinical scores predicting severe acute kidney injury after cardiac surgery.

来自 PUBMED

作者:

Englberger LSuri RMLi ZDearani JAPark SJSundt TM 3rdSchaff HV

展开

摘要:

Acute kidney injury (AKI) requiring renal replacement therapy (RRT) in patients undergoing cardiac surgery is associated strongly with adverse patient outcomes. Recently, 3 predictive risk models for RRT have been developed. The aims of our study are to validate the predictive scoring models for patients requiring postoperative RRT and test applicability to the broader spectrum of patients with postoperative severe AKI. Diagnostic test study. 12,096 patients undergoing cardiac surgery with cardiopulmonary bypass at Mayo Clinic, Rochester, MN, from 2000 through 2007. Cleveland Clinic score, Mehta score, and Simplified Renal Index (SRI) score. Incidence of postoperative RRT or composite outcome of severe AKI, defined as serum creatinine level >2.0 mg/dL, and a 2-fold increase compared with the preoperative baseline creatinine level or RRT. RRT was used in 254 (2.1%) patients, whereas severe AKI was present in 467 (3.9%). Discrimination for the prediction of RRT and severe AKI was good for all scoring models measured using areas under the receiver operating characteristic curve (AUROCs): 0.86 (95% CI, 0.84-0.88) for RRT and 0.81 (95% CI, 0.79-0.83) for severe AKI using the Cleveland score, 0.81 (95% CI, 0.78-0.86) and 0.76 (95% CI, 0.73-0.80) using the Mehta score, and 0.79 (95% CI, 0.77-0.82) and 0.75 (95% CI, 0.72-0.77) using the SRI score. The Cleveland score and Mehta score consistently showed significantly better discrimination compared with the SRI score (P < 0.001). Despite lower AUROCs for the prediction of severe AKI, the Cleveland score AUROC was still >0.80. The Mehta score is applicable in only a subgroup of patients. Single-center retrospective cohort study. The Cleveland scoring system offers the best discriminative value to predict postoperative RRT and covers most patients undergoing cardiac surgery. It also can be used for prediction of the composite end point of severe AKI, which enables broader application to patients at risk of postoperative kidney dysfunction.

收起

展开

DOI:

10.1053/j.ajkd.2010.04.017

被引量:

41

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1413)

参考文献(0)

引证文献(41)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读