Characterization and expression analysis of Medicago truncatula ROP GTPase family during the early stage of symbiosis.

来自 PUBMED

作者:

Liu WChen AMLuo LSun JCao LPYu GQZhu JBWang YZ

展开

摘要:

ROPs (Rho-related GTPases of plants) are small GTPases that are plant-specific signaling proteins. They act as molecular switches in a variety of developmental processes. In this study, seven cDNA clones coding for ROP GTPases have been isolated in Medicago truncatula, and conserved and divergent domains are identified in these predicted MtROP proteins. Phylogenetic analysis has indicated that MtROPs are distributed into groups II, III, IV but group I. MtROP genes are expressed in various tissues at different levels. A quantitative reverse transcription PCR analysis indicated that these MtROP genes have different expression profiles in the roots in response to infection with rhizobia. The expression of MtROP3, MtROP5 and MtROP6 are increased, as the expression of Nod factor or rhizobial-induced marker genes--NFP, Rip1 and Enod11; MtROP10 has showed enhanced expression at a certain post-inoculation time point. No significant changes in MtROP7 and MtROP9 expression have been detected and MtROP8 expression is dramatically decreased by about 80%-90%. Additionally, ROP promoter-GUS analysis has showed that MtROP3, MtROP5 and MtROP6 have elevated expression in transgenic root hairs after rhizobial inoculation. These results might suggest a role for some ROP GTPases in the regulation of early stages during rhizobial infection in symbiosis.

收起

展开

DOI:

10.1111/j.1744-7909.2010.00944.x

被引量:

11

年份:

2010

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(148)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读