SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo.

来自 PUBMED

作者:

Nishioka RItoh SGui TGai ZOikawa KKawai MTani MYamaue HMuragaki Y

展开

摘要:

SNAIL, a potent repressor of E-cadherin expression, plays a key role in inducing epithelial-to-mesenchymal transition (EMT) in epithelial cells. During EMT, epithelial cells lose cell polarity and adhesion, and undergo drastic morphological changes acquiring highly migratory abilities. Although there is increasing evidence that EMT is involved in the progression of some human cancers, its significance in the progression of pancreatic cancer remains elusive. In Panc-1, a well-known human pancreatic cancer cell line in which EMT is triggered by TGF-β1 treatment, SNAIL and vimentin are highly expressed, whereas E-cadherin expression is scant. In contrast, another human pancreatic cancer cell line, BxPC3, in which SNAIL expression is not detected, has high levels of E-cadherin expression and does not undergo EMT upon TGF-β1 treatment. After transfecting the SNAIL gene into BxPC3, however, the cells undergo EMT with remarkable alterations in cell morphology and molecular expression patterns without the addition of any growth factors. Furthermore, in an orthotopic transplantation model using SCID mice, SNAIL-transfected BxPC3 displayed highly metastatic and invasive activities. In the immunohistochemical analysis of the tumor derived from the SNAIL-expressing BxPC3, alterations suggestive of EMT were observed in the invasive tumor front. SNAIL enabled BxPC3 to undergo EMT, endowing it with a highly malignant potential in vivo. These results indicate that SNAIL-mediated EMT may be relevant in the progression of pancreatic cancer, and SNAIL could be a molecular target for a pancreatic cancer intervention.

收起

展开

DOI:

10.1016/j.yexmp.2010.05.008

被引量:

38

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(378)

参考文献(0)

引证文献(38)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读