Song divergence by sensory drive in Amazonian birds.

来自 PUBMED

作者:

Tobias JAAben JBrumfield RTDerryberry EPHalfwerk WSlabbekoorn HSeddon N

展开

摘要:

Visual signals are shaped by variation in the signaling environment through a process termed sensory drive, sometimes leading to speciation. However, the evidence for sensory drive in acoustic signals is restricted to comparisons between highly dissimilar habitats, or single-species studies in which it is difficult to rule out the influence of undetected ecological variables, pleiotropic effects, or chance. Here we assess whether this form of sensory drive-often termed "acoustic adaptation"-can generate signal divergence across ecological gradients. By studying avian communities in two Amazonian forest types, we show that songs of 17 "bamboo-specialist" bird species differ in predictable ways from their nearest relatives in adjacent terra firme forest. We also demonstrate that the direction of song divergence is correlated with the sound transmission properties of habitats, rather than with genetic divergence, ambient noise, or pleiotropic effects of mass and bill size. Our findings indicate that acoustic adaptation adds significantly to stochastic processes underlying song divergence, even when comparing between habitats with relatively similar structure. Furthermore, given that song differences potentially contribute to reproductive isolation, these findings are consistent with a wider role for sensory drive in the diversification of lineages with acoustic mating signals.

收起

展开

DOI:

10.1111/j.1558-5646.2010.01067.x

被引量:

33

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(184)

参考文献(0)

引证文献(33)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读