A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle.
To gain insight into the number of loci of large effect that underlie variation in cattle, a quantitative trait locus (QTL) scan for 14 economically important traits was performed in two commercial Angus populations using 390 microsatellites, 11 single nucleotide polymorphisms (SNPs) and one duplication loci. The first population comprised 1769 registered Angus bulls born between 1955 and 2003, with Expected Progeny Differences computed by the American Angus Association. The second comprised 38 half-sib families containing 1622 steers with six post-natal growth and carcass phenotypes. Linkage analysis was performed by half-sib least squares regression with gridqtl or Bayesian Markov chain Monte Carlo analysis of complex pedigrees with loki. Of the 673 detected QTL, only 118 have previously been reported, reflecting both the conservative approach to QTL reporting in the literature, and the more liberal approach taken in this study. From 33 to 71% of the genetic variance and 35 to 56% of the phenotypic variance in each trait was explained by the detected QTL. To analyse the effects of 11 SNPs and one duplication locus within candidate genes on each trait, a single marker analysis was performed by fitting an additive allele substitution model in both mapping populations. There were 53 associations detected between the SNP/duplication loci and traits with -log(10) P(nominal) ≥ 4.0, where each association explained 0.92% to 4.4% of the genetic variance and 0.01% to 1.86% of the phenotypic variance. Of these associations, only six SNP/duplication loci were located within 8 cM of a QTL peak for the trait, with two being located at the QTL peak: SST_DG156121:c.362A>G for ribeye muscle area and TG_X05380:c.422C>T for calving ease. Strong associations between several SNP/duplication loci and trait variation were obtained in the absence of any detected linked QTL. However, we reject the causality of several commercialized DNA tests, including an association between TG_X05380:c.422C>T and marbling in Angus cattle.
McClure MC
,Morsci NS
,Schnabel RD
,Kim JW
,Yao P
,Rolf MM
,McKay SD
,Gregg SJ
,Chapple RH
,Northcutt SL
,Taylor JF
... -
《-》
Association analysis of adiponectin and somatostatin polymorphisms on BTA1 with growth and carcass traits in Angus cattle.
This study tested positional candidate genes adiponectin (ADIPOQ) and somatostatin (SST) for effects on carcass traits in a commercially relevant cattle population. Both genes are located within a region of BTA1 previously reported to harbour quantitative trait loci (QTL) that affect marbling, quality grade, yield grade, ribeye area and weaning weight in Bos taurus x Bos indicus crosses. Except for the first intron of ADIPOQ, both genes, including over 2 kb upstream of the promoters, were sequenced in five registered Angus sires to identify polymorphisms. A variable copy duplication and three single nucleotide polymorphisms (SNPs) in ADIPOQ and one SNP in SST were genotyped and tested for association with 19 traits in a 14-generation pedigree of 1697 registered Angus artificial insemination sires representing all the major USA lineages of the breed. Linear models that parameterized predicted genetic merits in terms of allele substitution effects were fit by weighted least squares, and goodness-of-fit tests were employed to differentiate causal mutations or polymorphisms in strong linkage disequilibrium (LD) with causal mutations from markers in weak LD with QTL. We confirmed the presence of QTL affecting marbling, ribeye muscle area and fat thickness in the vicinity of SST and ADIPOQ on BTA1 in Angus; excluded SST as underlying the ribeye muscle area QTL; and excluded ADIPOQ as underlying the marbling score QTL. However, association analysis provides very limited information about QTL location and has little intrinsic value when performed in the absence of linkage or LD analysis using flanking marker data to localize the QTL effect relative to positional candidate genes.
Morsci NS
,Schnabel RD
,Taylor JF
《ANIMAL GENETICS》
Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle.
Feed intake and feed efficiency of beef cattle are economically relevant traits. The study was conducted to identify QTL for feed intake and feed efficiency of beef cattle by using genotype information from 100 microsatellite markers and 355 SNP genotyped across 400 progeny of 20 Angus, Charolais, or Alberta Hybrid bulls. Traits analyzed include feedlot ADG, daily DMI, feed-to-gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F)], and residual feed intake (RFI). A mixed model with sire as random and QTL effects as fixed was used to generate an F-statistic profile across and within families for each trait along each chromosome, followed by empirical permutation tests to determine significance thresholds for QTL detection. Putative QTL for ADG (chromosome-wise P < 0.05) were detected across families on chromosomes 5 (130 cM), 6 (42 cM), 7 (84 cM), 11 (20 cM), 14 (74 cM), 16 (22 cM), 17 (9 cM), 18 (46 cM), 19 (53 cM), and 28 (23 cM). For DMI, putative QTL that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (93 cM), 3 (123 cM), 15 (31 cM), 17 (81 cM), 18 (49 cM), 20 (56 cM), and 26 (69 cM) in the across-family analyses. Putative across-family QTL influencing F:G that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 3 (62 cM), 5 (129 cM), 7 (27 cM), 11 (16 cM), 16 (30 cM), 17 (81 cM), 22 (72 cM), 24 (55 cM), and 28 (24 cM). Putative QTL influencing RFI that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (90 cM), 5 (129 cM), 7 (22 cM), 8 (80 cM), 12 (89 cM), 16 (41 cM), 17 (19 cM), and 26 (48 cM) in the across-family analyses. In addition, a total of 4, 6, 1, and 8 chromosomes showed suggestive evidence (chromosome-wise, P < 0.10) for putative ADG, DMI, F:G, and RFI QTL, respectively. Most of the QTL detected across families were also detected within families, although the locations across families were not necessarily the locations within families, which is likely because of differences among families in marker informativeness for the different linkage groups. The locations and direction of some of the QTL effects reported in this study suggest potentially favorable pleiotropic effects for the underlying genes. Further studies will be required to confirm these QTL in other populations so that they can be fine-mapped for potential applications in marker-assisted selection and management of beef cattle.
Nkrumah JD
,Sherman EL
,Li C
,Marques E
,Crews DH Jr
,Bartusiak R
,Murdoch B
,Wang Z
,Basarab JA
,Moore SS
... -
《-》
A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls.
Genetic improvement of livestock populations can be achieved through detection and mapping of genetic markers linked to quantitative trait loci (QTL). With the completion of the bovine genome sequence assembly, single nucleotide polymorphism (SNP) assays spanning the whole bovine genome and research work on large-scale identification, validation, and analysis of genotypic variation in cattle has become possible. A total of 462 Canadian Holstein Bulls were used to test the association between SNP and QTL. Single locus linkage disequilibrium regression model was implemented to perform a whole genome scan to identify and map QTL affecting conformation and functional traits. One thousand five hundred thirty-six SNP markers from introns and exons of potential QTL regions for economically important traits across the bovine genome were selected for association analysis. A total of 45 and 151 SNP were found to be associated with 17 conformation and functional traits at a genome- and chromosome-wise significance level, respectively. Among the 196 significant SNP, 169 of them are newly detected in this study, whereas 27 of them have been reported in previous literature and 161 of these were located in genes and are worth further investigating to potentially identify the causative mutations underlying the QTL. The single locus linkage disequilibrium regression method using SNP marker genotypes has proven to be a successful methodology for detecting and mapping QTL in dairy cattle populations.
Kolbehdari D
,Wang Z
,Grant JR
,Murdoch B
,Prasad A
,Xiu Z
,Marques E
,Stothard P
,Moore SS
... -
《-》
Genome-wide association study of growth in crossbred beef cattle.
Chromosomal regions harboring variation affecting cattle birth weight and BW gain to 1 yr of age were identified by marker association using the highly parallel BovineSNP50 BeadChip (50K) assay composed of 54,001 individual SNP. Genotypes were obtained from progeny (F(1); 590 steers) and 2-, 3-, and 4-breed cross grandprogeny (F(1)(2) = F(1) x F(1); 1,306 steers and 707 females) of 150 AI sires representing 7 breeds (22 sires per breed; Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental). Genotypes and birth, weaning, and yearling BW records were used in whole-genome association analyses to estimate effects of individual SNP on growth. Traits analyzed included growth component traits: birth weight (BWT), 205-d adjusted birth to weaning BW gain (WG), 160-d adjusted postweaning BW gain (PWG); cumulative traits: 205-d adjusted weaning weight (WW = BWT + WG) and 365-d adjusted yearling weight (YW = BWT + WG + PWG); and indexes of relative differences between postnatal growth and birth weight. Modeled fixed effects included additive effects of calf and dam SNP genotype, year-sex-management contemporary groups, and covariates for calf and dam breed composition and heterosis. Direct and maternal additive polygenic effects and maternal permanent environment effects were random. Missing genotypes, including 50K genotypes of most dams, were approximated with a single-locus BLUP procedure from pedigree relationships and known 50K genotypes. Various association criteria were applied: stringent tests to account for multiple testing but with limited power to detect associations with small effects, and relaxed nominal P that may detect SNP associated with small effects but include excessive false positive associations. Genomic locations of the 231 SNP meeting stringent criteria generally coincided with described previously QTL affecting growth traits. The 12,425 SNP satisfying relaxed tests were located throughout the genome. Most SNP associated with BWT and postnatal growth affected components in the same direction, although detection of SNP associated with one component independent of others presents a possible opportunity for SNP-assisted selection to increase postnatal growth relative to BWT.
Snelling WM
,Allan MF
,Keele JW
,Kuehn LA
,McDaneld T
,Smith TP
,Sonstegard TS
,Thallman RM
,Bennett GL
... -
《-》