Psychometric properties of the Chinese version of the SF-36 in older adults with diabetes in Beijing, China.

来自 PUBMED

作者:

Hu JGruber KJHsueh KH

展开

摘要:

This study investigated the psychometric properties of the 36-item Short-Form Health Survey (SF-36) (China version) in older Chinese with diabetes living in Beijing, China. The SF-36 was administered to community-based sample of 182 older adults with diabetes living in Beijing. Data collection was conducted in face-to-face interviews. Reliability and validity were assessed using internal consistency, convergent and discriminant analyses. Exploratory principal components analyses (PCA) were conducted to compare the sample's response patterns with the hypothesized scale constructs. Item level validation of the scale supported the assumptions of the hypothesized structure. Internal consistency reliability (Cronbach's alpha >.70) of the subscales were acceptable except for the General Health subscale (.67). PCA confirmed general support of the two hypothesized dimensional factors and eight concepts (factors). The physical component summary (PCS) and the mental component summary (MCS) explained 62.26% of the variance and the eight factors components explained 67.39% of the variance. Known-group comparisons of scale scores indicated significantly higher levels of functionality for respondents with no blood pressure, heart, or depressive symptomatology problems. The Chinese version of the SF-36 showed good reliability and validity and was culturally equivalent. The scale is appropriate for use with older Chinese adults with diabetes.

收起

展开

DOI:

10.1016/j.diabres.2010.03.005

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(194)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读