Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines.
摘要:
Tumor growth factor-beta1 (TGF-beta1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-beta1-mediated EMT and fibrosis in kidney injury. We examined apoptosis and EMT in TGF-beta1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-beta1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-beta1 signal pathway proteins and EMT markers. We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-beta1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-beta1-mediated apoptosis and also partially inhibited TGF-beta1-mediated EMT. We showed that EPO treatment suppressed TGF-beta1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-beta1-treated cells. EPO inhibited apoptosis and EMT in TGF-beta1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.
收起
展开
DOI:
10.1016/j.yexcr.2010.02.022
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(478)
参考文献(0)
引证文献(10)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无