Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories.

来自 PUBMED

作者:

Bing TYang XMei HCao ZShangguan D

展开

摘要:

Aptamers that are selected in vitro from random pools of DNA or RNA molecules by SELEX (Systematic evolution of ligands by exponential enrichment) technique have been extensively explored for analytical and biomedical applications. Although many aptamers with high affinity and specificity against specific ligands have been reported, there is still a lack of well characterized DNA aptamers. Here we report the selection of a group of aptamer candidates (85 mer) against streptavidin. Through comparing the predicted secondary structures of all the candidates, a conservative bulge-hairpin structure section (about 29 mer) was found, and then it was determined to be the binding motif to streptavidin. This binding motif was further discovered to also exist in streptavidin-binding aptamers (SBAs) selected by three other laboratories using different methods. The primary sequences of this secondary structure motif are very different, only several nucleotides in the loop and bulge area are critical for binding and other nucleotides are variable. The streptavidin binding of all the SBAs could be competed by biotin implying that they bind to the same site on streptavidin. These results suggest that the evolution of SBA is predominated by specific groups on streptavidin. The highly variable sequence composition of streptavidin-binding aptamer would make the design of aptameric sensor or device based on streptavidin more flexible and easy.

收起

展开

DOI:

10.1016/j.bmc.2010.01.054

被引量:

35

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(347)

参考文献(0)

引证文献(35)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读